Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Patricia A. Richardson x
Clear All Modify Search

Nine runoff containment basins (RCBs), used directly or indirectly for irrigating plants in ornamental plant nurseries, and one adjacent stream were sampled for water quality between Feb. and July 2013 in Maryland (MD), Mississippi (MS), and Virginia (VA). Triplicate water samples were taken monthly. Analysis was done for 18 water quality variables including nitrate-nitrogen (NO3 -N) and ammonium-nitrogen (NH4 +-N), orthophosphate-phosphorus (PO4-P) and total-phosphorus (T-P), potassium, calcium, magnesium, sulfur, aluminum, boron (B), copper (Cu), iron (Fe), manganese, zinc (Zn), pH, total alkalinity (T-Alk), electrical conductivity (EC), and sodium. Additionally, 15 RCBs from 10 nurseries in Alabama (AL), Louisiana (LA), and MS were sampled in 2014 and 2016. Most prevalent correlations (P = 0.01) were between macronutrients, EC, B, Fe, and Zn, but none were prevalent across a majority of RCBs. Water quality parameter values were mostly present at low to preferred levels in all 25 waterways. Macronutrient levels were highest for a RCB that receives fertility from fertigation derived runoff. Water pH ranged from acidic to alkaline (>8). Results of this study show water quality in RCBs can be suitable for promoting plant health in ornamental plant nurseries, but also shows levels will vary between individual RCBs, therefore demonstrates need to verify water quality from individual water sources.

Free access

Triplicate water samples were collected monthly from nine waterways [eight runoff containment basins (RCBs) and one stream] on four commercial ornamental plant nurseries from February to July, and from one RCB and nursery from April to October. Four RCBs, one per nursery, were actively used as an irrigation water source. Analysis was done for 18 water quality variables, including ammonium–nitrogen (NH4 +–N), nitrate–nitrogen (NO3 –N), ortho phosphate–phosphorus (PO4–P), total-phosphorus (T-P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), aluminum (Al), boron (B), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), pH, total alkalinity (T-Alk), electrical conductivity (EC), and sodium (Na). The degree and rate of monthly change varied considerably between RCBs. Macronutrients generally increased at most nurseries in 1–2 months after fertilizer application particularly in three RCBs (MD21, VA11, and VA12), with levels of N- and P forms exceeding preferred criteria for irrigation water by June and July in VA11 and VA12. Micronutrients fluctuated less but did vary per RCB with the most monthly change occurring in MD21. Even though pH fluctuated, pH tended to remain alkaline or neutral to acidic respective of the RCB during the entire sample period. T-Alk tended to increase over the summer. EC primarily fluctuated in RCBs with high macronutrient levels. Although levels of N- and P forms were mostly suitable by irrigation water criteria, they were frequently above U.S. Environmental Protection Agency (USEPA) nutrient criteria for promoting healthy water environments of lakes and reservoirs, and are discussed.

Free access