Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Paongpetch Phimchan x
Clear All Modify Search
Free access

Paongpetch Phimchan, Suchila Techawongstien, Saksit Chanthai and Paul W. Bosland

Capsaicinoids are the alkaloids in hot pepper that cause the sensation of heat when eaten and are affected by a genetic and environment interaction. Drought stress is well recognized as an environmental condition that influences capsaicinoid accumulation. This investigation identified the responses of capsaicinoid accumulation in hot pepper cultivars under drought stress condition. A total of nine cultivars with a different initial pungency level, i.e., low, medium, and high, was subjected to gradual drought stress during the flowering stage. Plants in this drought stress group were supplied with reduced water applications of 25%, 50%, and 75% by volume at 10, 20, and 30 days after flowering (DAF), respectively. Leaf water potential and relative water content were recorded to measure the level of drought stress. The results indicated that all cultivars were subjected to drought stress because of their decrease in leaf water potential and changes in physiological characteristics, e.g., growth and yield performance. In addition, leaf area and shoot-to-root ratio were good criteria for identifying hot pepper cultivars under drought stress because their responses were correlated with the stress level and yield components. Yield performances of the high pungency group did not decrease under drought stress, whereas those of the low pungency group did decrease. In conclusion, capsaicinoid levels increased for all cultivars studied when subjected to drought stress, except for the cultivars in the high pungency group. A yield response under drought stress for the medium pungency group varied and was not found to be associated with drought stress.