Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Pamela C. Korczynski x
  • Refine by Access: All x
Clear All Modify Search
Full access

James E. Faust, Pamela C. Korczynski, and Uttara C. Samarakoon

During the production of ornamentals in commercial greenhouses, hanging baskets are often grown above the bench or floor space to maximize production. These hanging baskets impact the light environment delivered to the crop underneath. An experiment was conducted to quantify the effect of hanging basket density (determined by number of lines of containers per greenhouse bay and container spacing per line), container content (with plants vs. no plants), and container color (white vs. green) on photosynthetic photon flux (PPF) transmission and red (R) and far-red (FR) light measurements at the greenhouse floor under the hanging basket treatments. Interception of PPF was calculated as a proportion of the treatment with no hanging baskets. Interception of PPF increased as hanging basket density increased, from 5.3% interception at 0.21 containers/yard2 to 25.5% interception at 2.57 containers/yard2. Green containers intercepted 36.1% more radiation than the white containers. Presence of plants in the containers resulted in 62.3% greater PPF interception than containers without plants. R:FR was reduced from 1.15 measured under hanging basket treatments without plants to 1.07 under hanging basket treatments containing plants.

Full access

Pamela C. Korczynski, Joanne Logan, and James E. Faust

The daily light integral (DLI) is a measurement of the total amount of photosynthetically active radiation delivered over a 24-hour period and is an important factor influencing plant growth over weeks and months. Contour maps were developed to demonstrate the mean DLI for each month of the year across the contiguous United States. The maps are based on 30 years of solar radiation data for 216 sites compiled and reported by the National Renewable Energy Lab in radiometric units (watt-hours per m-2·d-1, from 300 to 3,000 nm) that we converted to quantum units (mol·m-2·d-1, 400 to 700 nm). The mean DLI ranges from 5 to 10 mol·m-2·d-1 across the northern U.S. in December to 55 to 60 mol·m-2·d-1 in the southwestern U.S. in May through July. From October through February, the differences in DLI primarily occur between the northern and southern U.S., while from May through August the differences in DLI primarily occur between the eastern and western U.S. The DLI changes rapidly during the months before and after the vernal and autumnal equinoxes, e.g., increasing by more than 60% from February to April in many locations. The contour maps provide a means of estimating the typical DLI received across the U.S. throughout the year.

Full access

James E. Faust, Pamela C. Korczynski, and Robert Klein

Experiments were conducted to evaluate the effects of paclobutrazol drenches on poinsettia (Euphorbia pulcherrima) `Freedom Red' height and flowering. In 1997 and 1998, paclobutrazol drenches [(a.i.) 0.118 mg/container; (28,350 mg = 1.0 oz)] were applied to poinsettias grown under natural photoperiods on four dates from 1 Oct. to 2 Nov. On plants receiving the paclobutrazol drench application during the second week in October, bract area was reduced by 15% and 12% compared with that of the control in 1997 and 1998, respectively; however, the bract area reduction was commercially acceptable. Anthesis date was not significantly affected during either year. Plant height and internode length measurements indicate that paclobutrazol drench applications had both a rapid and a long-term impact on poinsettia stem elongation. Paclobutrazol drenches applied in late October or early November are an effective tool for controlling late-season stem elongation of `Freedom Red' poinsettias grown under natural photoperiods. These late-season applications have the least risk for negatively affecting bract size while still reducing stem elongation in the last few weeks of the crop. Chemical names used: (±)-(R*,R*)-b-[(chlorophenyl)methyl]-a-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).