Search Results
The regal pelargonium (P. x domesticum) is generally characterized by low fertility and poor seed set. In studys designed to assess factors that contribute to low fecundity in this crop we have examined genotype interactions among various cultivars and have identified lines that differ in degree of male and female fertility.
The objective of this study was to examine genotypic variation, other than self-incompatibility, of P. x domesticum pistils in supporting the development of the male gametophyte. Variation in pollen germination and growth was assessed after crossing either a male of high fertility or a mate of poor fertility to nine different selections of varying female fertility. Styles were harvested 2 hours after pollination and examined using fluorescence microscopy to determine the number of germinated pollen grains on the stigma and the number of pollen tubes growing down the style.
Female selections displayed large differences in their ability to support pollen tubes. Styles from different females pollinated with the same male varied in average number of pollen tubes from 30 to 2.
Brassica napus (genome aacc), a natural allotetraploid derived from hybridization between B. oleracea L. (genome cc) and B. rapa L. (genome aa), was synthesized by sexual and somatic interspecific hybridizations from the same parent plants to compare the two methods of combining genomes and assess the genetic consequences of bypassing the gametophytic phase before hybrid formation. Highly heterozygous species parents were first produced by intraspecific hybridization between two subspecies each of B. oleracea and B. rapa. Leaf tissue from young plants of both parental species served as a source of protoplasts for fusion; the same plants were later used for crosses. Seventy-two somatic hybrids were produced using a polyethylene glycol-mediated fusion protocol and 27 sexual hybrids were obtained by embryo rescue. Somatic hybrids were produced between one B. oleracea and two sibling B. rapa plants. Sexual hybrids were successfully produced with only one of the two B. rapa siblings. Hybrids were identified by morphology, isozyme patterns, and total DNA content. Although fertile allotetraploid somatic hybrids were obtained within 7 months after seeding parent lines, >1 year was required to produce fertile sexual hybrids.
Brassica napus (genome aacc), a natural allotetraploid derived from hybridization between B. oleracea L. (genome cc) and B. rapa L. (genome aa), was resynthesized by somatic and sexual hybridization. Seventy-two interspecific somatic (R0) hybrids and 27 sexual (F1) hybrids were produced from the same parent plants. R0 and F1 hybrids displayed morphology that was intermediate to the species parents, but B. rapa characteristics tended to predominate. R0 hybrids with nuclear DNA content equivalent to natural B. napus were uniform for nuclear-encoded traits, whereas allotetraploid F1 hybrids were variable for traits such as morphology, flower color, and seed production. Chloroplast restriction fragment length polymorphisms (RFLPs) showed unequal segregation in the R0 population favoring the chloroplasts of B. rapa; two of the 58 R0 hybrids tested had only the B. oleracea marker and 10 contained markers of both parents. Mitochondrial RFLPs showed a similar bias among the 56 R0 hybrids tested; only four plants showed B. oleracea markers exclusively, and the remaining plants were evenly distributed between having only B. rapa markers or having combinations from both species. In contrast, sexual hybrids displayed only maternal organelle markers.
Phlox is an important genus of herbaceous ornamental plants previously targeted for germplasm development, characterization, and enhancement by the U.S. Department of Agriculture, National Plant Germplasm System. Among Phlox in cultivation, Phlox paniculata is the most widely grown and intensively bred species, but little is known about variation in genome size and ploidy of this species or of related taxa that may be used for germplasm enhancement. The objective of this study was to assess cytotype variation in a diverse collection of cultivars and wild germplasm of P. paniculata (subsection Paniculatae) and of related taxa in subsections Paniculatae and Phlox. The collection included 138 accessions from seven species and two interspecific hybrids. Flow cytometry was used to estimate holoploid (2C) genome sizes and to infer ploidy levels. Chromosome counts were made to calibrate ploidy with genome size for a subset of taxa. Most cultivars were diploid (2n = 2x = 14) and had mean genome sizes that did not vary between subsections Paniculatae (14.33 pg) and Phlox (14.23 pg) although size variation was greater among cultivars within subsection Phlox. Triploid cultivars of P. paniculata, with a mean genome size of 21.36 pg and mitotic chromosome counts of 2n = 3x = 21, were identified. Such triploids suggests previous interploid hybridization within this taxon. Five tetraploid (2n = 4x = 28) cultivars were found in subsection Phlox; all were selections of P. glaberrima ssp. triflora, and had a mean genome size of 25.44 pg; chromosome counts in one of these confirmed they were tetraploid. The putative hybrid Phlox Suffruticosa Group ‘Miss Lingard’ showed an intermediate genome size of 21.21 pg supporting a triploid, hybrid origin of this taxon. Mean 2C genome sizes among wild-collected accessions were similar to values reported for cultivars (Paniculatae = 14.59 pg, Phlox = 14.23 pg), but taxa in subsection Phlox exhibited greater variation that included two tetraploids identified among wild-collected accessions; one, of P. pulchra, had a mean genome size of 26.17 pg, representing the first report of polyploidy in the taxon. This is the first report on genome size for the majority of species in the study. Although genome size could not be used to differentiate taxa in subsections Paniculatae and Phlox, the data provide further insights into cytotype variation of Phlox germplasm useful for plant breeders and systematists.
Abstract
More than 65 different genotypes, including cultivars and inbred lines, from five cruciferous species (Brassica oleracea L., B. campestris L., B. napus L., B. juncea L., and Raphanus sativus L.) were tested for their in vitro response of leaf protoplasts. Protoplasts were cultured in three liquid media and the resulting colonies were placed on seven test regeneration media. Significant differences among the species were found in plating efficiency in the frequency of shoot regeneration. Two broad response groups were identified: 1) Cultivars from B. oleracea and B. napus—these generally yielded protoplasts that were able to divide, form colonies at high frequencies, and regenerate shoots at variable frequencies; and 2) cultivars of the other species evaluated, which typically exhibited low plating efficiencies and little, if any, shoot regeneration. Evaluation for the effect of the cytoplasmic constitution of a few B. oleracea breeding lines on in vitro performance indicated that protoplasts carrying the Ogura (R1) male-sterile cytoplasm regenerated shoots at slightly lower frequencies than the corresponding alloplasmic-fertile lines. Genotypes exhibiting high frequency of shoot formation in one medium also had efficient shoot regeneration in other media as well, while genotypes with low shoot regeneration responded consistently in the different media used. This consistency in response indicates that genotype plays a critical role in determining the success of leaf protoplast culture in the crucifers.
As a prelude to interspecific hybridization, we compared the floral biology of bottlebrush buckeye (Aesculus parviflora) and red buckeye (A. pavia) by examining inflorescence morphology, pattern of floral anthesis, sex expression, and the effects of panicle decapitation on complete flower development. Inflorescences of both species (n = 1606) were randomly selected and analyzed for length, total number of flowers and complete flower number and location. The pattern of anthesis was observed in four genotypes using 10–30 inflorescences per plant. For each flower, its date of anthesis, position on both the rachis and cincinnus, and sex were recorded. For studies of panicle decapitation, sets of panicles were selected and one member was severed in half early in development in an attempt to increase the number of complete flowers. More than one-fourth of all panicles observed were completely staminate. For both species, the ratio of complete flowers to male flowers (C:M) within mixed panicles was about 5%. Complete flowers were observed in the basal portion of A. pavia inflorescences and in the apical portion of A. parviflora inflorescences. Anthesis progressed from base to tip over a period of 6–11 days. Complete flowers are present in A. pavia from the beginning of anthesis but do not appear in A. parviflora until the fifth day of anthesis. Staminate flowers are present throughout anthesis in both species. Severing panicles in half increased the potential for differentiating complete flowers. In conclusion, the frequency of complete flowers in both species was quite low, but could be increased by panicle decapitation to increase opportunities for controlled hybridization.
The genus Aesculus (buckeyes and/or horsechestnuts) is composed of 13 species and a number of interspecific hybrids. Pollen from 11 genotypes from five Aesculus species and the hybrid Aesculus ×carnea were used to develop an in-vitro germination test to evaluate pollen viability under various storage treatments. This test was optimized using samples of both fresh pollen and pollen that had been stored up to 1 year. The most effective medium contained 20% sucrose, 100 mg·L-1 H2BO3, 150 mg·L-1 Ca(NO3)2, and 1% agar. The highest germination percentage was observed at 15 °C across all storage treatments. Fresh pollen germinated in excess of 80% over a wide range of germination temperatures. Based on this, all specimens studied would be good pollen parents. The differences in pollen germination between storage at -20 and -80 °C were nonsignificant, but the duration of the storage period was highly significant. At 3 months, viability remained above 60% for four of the six species/hybrid tested. However, at 12 months, all pollen tested dropped below the threshold for good fruit set based on in-vitro pollen germination. Based on these observations, short-term pollen storage may permit crosses between parents with temporally separate flowering phenologies. However, conventional storage procedures are inadequate to maintain pollen collected from a male parent for crosses in subsequent growing seasons.
Pulsatilla cernua var. koreana seeds were harvested at six different dates between 16 days after flowering (DAF) (8 Apr.) and 43 DAF (5 May) in 2018 and categorized into six groups based on X-ray images. Germination tests were performed without and with 2 weeks of moist 5 °C treatment [cold stratification (CS)]. Seeds harvested at 38 DAF (30 Apr.) with well-developed vegetative organs (embryo and endosperm) in seeds categorized as A and B (seed A and seed B, respectively) based on the X-ray images were considered fully developed, and 80% of seeds were considered mature. However, the germination rates were less than 26% or 28% when full seeds harvested at 43 DAF received no or 14 days of CS treatment, respectively. Our study suggests that the low germination rate of fully developed seeds as judged by X-ray images showing well-developed embryo and endosperm could result from the presence of dormancy that was not broken effectively by 14 days of CS coupled with the loss of viability caused by 8 months of dry storage at 5 °C.
Drum priming systems are among the most common methods of seed priming for commercial treatment. The supply of water to the seeds is controlled by physical means, and seeds are able to reach a desired moisture content without the use of osmotic solutions for hydration control. The brassinosteroid (BR), 24-epibrassinolide (24-EpiBL), has been shown previously to have a significant effect on seed performance. Therefore, the aim of this study was to verify the feasibility of drum priming associated with added 24-EpiBL on enhancement of bell pepper seed performance. Two bell pepper cultivars (AF-6 and AF-7) were tested, and each cultivar represented, respectively, by three and four seed lots with different initial physiological potentials. Seed performance was determined by evaluating standard germination, initial seedling growth, and changes on the antioxidant activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). Seed Vigor Imaging System (SVIS®) was used to assess the initial seedling growth. The nondenaturing polyacrylamide gel electrophoresis (PAGE) technique was used to evaluate possible changes in the enzymatic antioxidant system. Several advantages were verified in the drum priming technique with added 24-EpiBL compared with the traditional procedure (water alone). Germination time was reduced followed by a seedling growth increase. Concomitantly, seed enzymatic activity was improved. However, results showed different response for each enzyme. Drum priming with 24-EpiBL demonstrates viability for commercial treatment and enhancement of bell pepper seeds.
Corylopsis seed germination tests were conducted to assess the influence of harvest date (seed maturity) and cold stratification (CS) at 5 °C. Corylopsis gotoana seeds harvested on 12 July, 2 and 22 Aug., 6 and 20 Sept., and 1 and 10 Oct. 2011 were immersed in water for 20 min to separate fully developed seeds (full seeds) from empty seeds by floatation, and by X-ray scanning to identify full from empty seeds (Expt. 1). Immersing seeds in water did not effectively separate full seeds from empty seeds as evaluated by seed germination tests. Seeds harvested on or around 6 Sept. that sank showed translucent X-ray images with fully developed internal structures composed of embryo, cotyledons, and endosperm, and were considered mature. Without CS, >12% seeds harvested on 20 Sept. germinated, regardless of whether seeds were full or empty. Seeds of C. coreana harvested on 5 and 15 Sept., and 5 and 18 Oct. were stored dry at 20 °C until 27 Dec. and germinated after 0, 3, 6, 9, and 12 weeks of CS (Expt. 2). Longer than 6 weeks of CS was required to accelerate and increase the germination of seeds harvested on or after 5 Sept. Germination percentage of full seeds harvested on Oct. 18 was increased to >72% as the duration of CS treatment increased to 12 weeks. In conclusion, fully developed seeds harvested on or after 6 Sept. were considered mature and 6 weeks of CS accelerated germination and increased the germination percentage. Further, dormancy of Corylopsis seeds appears to be shallow since germination occurred without any CS.