Search Results
The Center for Environmental Farming Systems (CEFS) is dedicated to developing farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Dept. of Agriculture Cherry Farm near Goldsboro, CEFS has >2000 acres (1000 cleared). This unique center is a partnership among North Carolina State Univ., North Carolina Agriculture and Technical State Univ., North Carolina Dep. of Agriculture and Consumer Services, nongovernmental organizations, and other state and federal agencies, farmers, and citizens. Long-term cropping systems that integrate the broad range of factors involved in agricultural systems is the focus of the Cropping Systems Unit at CEFS. The USDA SARE program has provided funding to help establish a comprehensive long-term, large-scale experiment. Data collection and analyses include comprehensive soil and water quality, pests and predators (weeds, insects, and disease), crop factors (growth, yield, and quality), economic factors (viability, on/off farm impact, and community), and energy issues. Systems being compared are a successional ecosystem, plantation forestry/wood lot, integrated crop/animal production system, organic production system, and a cash-grain cropping system (BMP). An interdisciplinary team of scientists from almost every department from the College of Agriculture and Life Sciences, along with faculty from North Carolina Agriculture and Technical State Univ., NGO representatives, and farmers are collaborating in this endeavor. Challenges and opportunities in building collaborative teams and setting up such long-term trials will be discussed.
There is an increasing demand for education in organic and sustainable agriculture from undergraduates, graduate students and extension agents. In this paper, we discuss highlights and evaluations of a multilevel approach to education currently being developed at North Carolina State University (NCSU) that integrates interdisciplinary training in organic and sustainable agriculture and the related discipline of agroecology through a variety of programs for undergraduate students, graduate students, and extension agents. These educational programs are possible because of a committed interdisciplinary faculty team and the Center for Environmental Farming Systems, a facility dedicated to sustainable and organic agriculture research, education, and outreach. Undergraduate programs include an inquiry-based sustainable agriculture summer internship program, a sustainable agriculture apprenticeship program, and an interdisciplinary agroecology minor that includes two newly developed courses in agroecology and a web-based agroecology course. Research projects and a diversity of courses focusing on aspects of sustainable and organic agriculture are available at NCSU for graduate students and a PhD sustainable agriculture minor is under development. A series of workshops on organic systems training offered as a graduate-level course at NCSU for extension agents is also described. Connecting experiential training to a strong interdisciplinary academic curriculum in organic and sustainable agriculture was a primary objective and a common element across all programs. We believe the NCSU educational approach and programs described here may offer insights for other land grant universities considering developing multilevel sustainable agriculture educational programs.
Mesophyll cells are desirable targets for studying responses to pathogens or pathogen-induced toxins. Based on host-pathogen or host-toxin interaction studies at the cellular level it can be determined whether a toxin can be used as a selective agent. Suspension cells are suitable selection units for in vitro selection of potentially useful somaclonal variants. Protocols for the isolation of muskmelon mesophyll and suspension cells were developed in order to study the effects of roridin E, a toxin produced by Myrothecium roridum, on leaf spot tolerant and sensitive muskmelon cultivars. Viable mesophyll cells were obtained by exposing leaf tissue to 1% cellulysin and 5% macerase in B5 medium with 0.4M sucrose for one hour. Viable suspension cells were maintained a medium consisting of MS salts, 3% sucrose, 3 (μM thiamine·HCl, 555 μM myo-Inositol, 28 μM kinetin and 9 μM IAA. Fluorescein diacetate was used to determine viability over time. Membrane stability was monitored by measuring changes in the fluorescence of cells stained with Merocyanine 540 (MC 540), an optical probe for changes in transmembrane electrical potential (PD).
Biomass partitioning of cacao (Theobroma cacao L.) was studied in seven clones and five hybrids in a replicated experiment in Bahia, Brazil. Over an 18-month period, a 7-fold difference in dry bean yield was demonstrated between genotypes, ranging from the equivalent of 200 to 1389 kg·ha-1. During the same interval, the increase in trunk cross-sectional area ranged from 11.1 cm2 for clone EEG-29 to 27.6 cm2 for hybrid PA-150 × MA-15. Yield efficiency increment (the ratio of cumulative yield to the increase in trunk circumference), which indicated partitioning between the vegetative and reproductive components, ranged from 0.008 kg·cm-2 for clone CP-82 to 0.08 kg·cm-2 for clone EEG-29. An examination of biomass partitioning within the pod of the seven clones revealed that the beans accounted for between 32.0% (CP-82) and 44.5% (ICS-9) of the pod biomass. The study demonstrated the potential for yield improvement in cacao by selectively breeding for more efficient partitioning to the yield component.
The North American muscadine grape (Muscadinia rotundifolia Small) is a valuable source of resistance to powdery mildew [Uncinula necator (Schw.) Burr], root-knot nematode (Meloidogyne Goeldi), dagger nematode (Xiphinema index Thorne and Allen), grape phylloxera (Daktulosphaira vitifoliae Fitch), and Pierce's disease (Xylella fastidiosa Wells et al.). Efforts to breed muscadine grapes commenced in the early 1900s and have generated a large number of cultivars and a limited number of hybrids with Vitis vinifera L. and other Vitis L. species. Collections of this germplasm are currently maintained with accession identity based on declared identity when collected, breeding records, and comparisons of morphological traits. This study reports on the first use of DNA-based simple sequence repeat (SSR) marker profiles to authenticate M. rotundifolia cultivars and hybrids. A total of 57 accessions [39 M. rotundifolia cultivars, 3 V. vinifera cultivars, 3 Vitis spp. hybrids, and 12 V. vinifera × M. rotundifolia (VR) hybrids] from collections at the U.S. Department of Agriculture National Clonal Germplasm Repository and the University of California (Davis) Department of Viticulture and Enology were analyzed with 14 SSR markers. The fingerprint profiles were used to verify published breeding records of 31 M. rotundifolia cultivars and hybrids by comparing the shared alleles of parents and progeny. Marker data indicated that four cultivars were incorrectly identified; their alleles did not match respective parent/progeny relationships at more than five loci. Two M. rotundifolia accessions had the same fingerprint profile as a third accession at all 14 markers, implicating a likely planting error. The M. rotundifolia cultivars exhibited 88 unique alleles that were not present in a database of more than 600 V. vinifera cultivars.
Daminozide is a growth retardant used in potted plant production as a foliar spray to inhibit shoot elongation. It has its greatest inhibitory effect immediately after application, becoming less pronounced thereafter; continued retardation is accomplished by reapplication at 7to 14-day intervals. A model for this retardation effect is useful in developing decision support tools, as well as in optimizing (perhaps minimizing) the use of this growth retardant. Such a model, as developed and described earlier, simulates the effect of a foliar spray application of daminozide at various concentrations on various days during the production cycle. The objective of this work was to validate this model for various varieties of chrysanthemum. Using the model to simulate the effect of one application of daminozide resulted in predicted plant heights very close to the observed heights for most of the varieties tested. Of four methods used to implement the multiple-application effect, two resulted in very good simulation of the observed plant heights. In summary, the model was shown to be valid for all the varieties of chrysanthemum tested.
The Center for Environmental Farming Systems (CEFS) is dedicated to farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Department of Agriculture and Consumer Services (NCDACS) Cherry Farm near Goldsboro, N.C.; CEFS operations extend over a land area of about 800 ha (2000 acres) [400 ha (1000 acres) cleared]. This unique center is a partnership among North Carolina State University (NCSU), North Carolina Agriculture and Technical State University (NCATSU), NCDACS, nongovernmental organizations (NGOs), other state and federal agencies, farmers and citizens. Long-term approaches that integrate the broad range of factors involved in agricultural systems are the focus of the Farming Systems Research Unit. The goal is to provide the empirical framework to address landscape-scale issues that impact long-run sustainability of North Carolina's agriculture. To this end, data collection and analyses include soil parameters (biological, chemical, physical), pests and predators (weeds, insects and disease), crop factors (growth, yield, and quality), economic factors, and energy issues. Five systems are being compared: a successional ecosystem, a plantation forestry-woodlot, an integrated crop-animal production system, an organic production system, and a cash-grain [best management practice (BMP)] cropping system. An interdisciplinary team of scientistsfrom the College of Agriculture and Life Sciences at NCSU and NCATSU, along with individuals from the NCDACS, NGO representatives, and farmers are collaborating in this endeavor. Experimental design and protocol are discussed, in addition to challenges and opportunities in designing and implementing long-term farming systems trials.