Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Odemari S. Mbuya x
  • All content x
Clear All Modify Search
Free access

Carlene A. Chase and Odemari S. Mbuya

Living mulches between beds of polyethylene-mulched vegetable crops may suppress weeds and decrease surface and ground water contamination by pesticides. They should be either low growing or amenable to mowing and should withstand traffic. Twelve winter cover crops were planted in north (N.) and north central (N.C.) Florida in Fall 2004: black oats (Avena strigosa cv. Soilsaver), annual ryegrass (Lolium multiflorum cv. Gulf), rye (Secale cereale cv. Wrens Abruzzi), hard fescue (Festuca longifolia cv. Oxford), white clover (Trifolium repens cvs. Dutch white and New Zealand white), berseem clover (T. alexandrinum cv. Bigbee), crimson clover (T. incarnatum cv. Dixie), subterranean clover (T. subterraneum cv. Mt. Barker), arrowleaf clover (T. vesiculosum cv. Yuchi), a barrel medic (Medicago trunculata cv. Parabinga), and a disc × strand medic (M. tornata × M. littoralis cv. Toreador). Black oats, rye, and annual ryegrass established quickly and suppressed winter annual weeds. Canopy development of the other species was poor. Shoot biomass was greater in N. Florida than in N.C. Florida. The highest shoot biomass occurred with black oats. By 8 weeks after planting (WAP) rye and annual ryegrass had similar amounts of biomass, but by 16 WAP the yield of rye was greater. At some harvests, biomass with wheel traffic or mowing was lower than without, but black oats, rye, and ryegrass did not succumb to these treatments. Of the legumes, only crimson clover and `Toreador' medic in N. Florida produced sufficient biomass by 16 WAP to permit a harvest. Black oats, rye, and annual ryegrass appear to be the best living mulch candidates; however, black oats would require more frequent mowing.

Free access

Carlene A. Chase, Odemari S. Mbuya, and Danielle D. Treadwell

The effect of living mulches (LM) on weed suppression, crop growth and yield, and soil hydraulic conductivity were evaluated in broccoli in North Central Florida at Citra and in North Florida at Live Oak, using organic production methods. `Florida 401' rye, `Wrens Abruzzi' rye, black oat, and annual ryegrass, were either mowed or left untreated and compared with weedy and weed-free controls. Cover crop biomass was highest with `Florida 401' at both locations, intermediate with black oat and `Wrens Abruzzi', and lowest with ryegrass. The greatest weed infestation occurred with the weedy control. In Citra, ryegrass decreased weed biomass by 21% compared with ≈45% by the other LM with no differences due to mowing. However, at Live Oak, mowed LM and the weedy control had similar amounts of weed biomass; whereas unmowed LM had 30% to 40% less weed biomass than the weedy control. At both locations, broccoli heights were greatest with the weed-free control, intermediate with the cover crops, and lowest with the weedy control. Total above-ground broccoli biomass and marketable weight of broccoli at Live Oak, and number of marketable heads at both locations, were unaffected by the LM. At Citra, total broccoli biomass with LM and the weedy control decreased in a similar manner, so that total broccoli biomass was highest with the weed-free control. Ryegrass and the weedy control suppressed marketable broccoli weight by 24%; however, greater decrease in marketable weight (39% to 43%) occurred with `Florida 401', `Wrens Abruzzi', and black oat. At both locations, mowing of LM had no effect on broccoli growth or yield. There was no difference in saturated hydraulic conductivity among treatments.