Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: O.U. K. Reddy x
Clear All Modify Search

Wide phenotypic diversity exists among American heirloom cultivars of watermelon (Citrullus lanatus var. lanatus). However, in published studies, low or no polymorphism was revealed among those heirlooms using isozyme or randomly amplified polymorphic DNA (RAPD) markers. In this study, experiments with inter-simple sequence repeat (ISSR) [also known as simple sequence repeat-(SSR-) anchored primers] and amplified fragment-length polymorphism (AFLP) markers produced high polymorphisms among watermelon heirloom cultivars. ISSR (111) and AFLP (118) markers (229 total) identified 80.2% to 97.8% genetic similarity among heirloom cultivars. The phylogenetic relations based on ISSR and AFLP markers are highly consistent with the parental records available for some of the heirloom cultivars, providing confidence in the dendogram constructed for heirlooms based on similarity values. As compared with RAPD markers, ISSRs and AFLPs are highly effective in differentiating among watermelon cultivars or elite lines with limited genetic diversity.

Free access

Genetic linkage map is being constructed for watermelon based on a testcross population and an F2 population. The testcross map comprises 262 markers (RAPD, ISSR, AFLP, SSR and ASRP markers) and covers 1,350 cM. The map comprises 11 large linkage groups (50.7–155.2 cM), 5 medium-size linkage groups (37.5–46.2 cM), and 16 small linkage groups (4.2–31.4 cM). Most AFLP markers are clustered on two linkage regions, while all other marker types are randomly dispersed on the genome. Many of the markers in this study are skewed from the classical (Mendelian) segregation ratio of1:1 in the testcross or the 3:1 ratio in the F2 population. Although the skewed segregation, marker order appeared to be consistent in linkage groups of the testcross and F2 population. A cDNA library was constructed using RNA isolated from watermelon flesh 1 week (rapid cell division stage), 2 weeks (cell growth and storage deposition stage, 4 weeks (maturation stage), and 5 weeks (postmaturation stage) post pollination. Over 1,020 cDNA clones were sequenced, and were analyzed using the Basic Local Alignment Search Tool (BLAST). The sequenced cDNA clones were designated as expressed sequenced tag (EST) markers and will be used in mapping analysis of watermelon genome.

Free access

Genetic linkage map is being constructed for watermelon based on a testcross population and an F2 population. About 51.0% and 31.8% of the markers in the testcross and F2 populations are skewed form the expected segregation ratios. AFLP markers appeared to be clustered on linkage regions, while ISSR and RAPD markers are randomly dispersed on the genome. AFLP markers also have greater genetic distances as compared with ISSR and RAPD markers, resulting in significant increase of map distance. An initial genetic map (based on the testcross population) that contains 27 ISSR and 141 RAPD markers has a total linkage distance of 1,166.2 cM. The addition of 2 ISSR, 8 RAPD and 77 AFLP markers increased the genetic distance of the map to 2,509.9 cM. Similar results with AFLP markers were also shown in mapping experiments with an F2S7 recombinant inbred line (RIL) population that was recently constructed for watermelon. Although the skewed segregation, marker order appeared to be consistent in linkage groups of the testcross and the F2 population. Experiments with SSR, and EST markers are being conducted to saturate the linkage map of watermelon genome.

Free access

Seventy-one amplified fragment length polymorphism (AFLP), 93 sequence related amplified polymorphism (SRAP), and 14 simple sequence repeat (SSR) markers were used to extend an initial genetic linkage map for watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. The initial map was based on 151 randomly amplified polymorphic DNA (RAPD) and 30 and inter-simple sequence repeat (ISSR) markers. A testcross population previously used for mapping of RAPD and ISSR markers was used in this study: {plant accession Griffin 14113 [C. lanatus var. citroide (L.H. Bailey) Mansf.] × the watermelon cultivar New Hampshire Midget (C. lanatus var. lanatus)} × PI 386015 [C. colocynthis (L.) Schrad.]. The linkage map contains 360 DNA markers distributed on 19 linkage groups, and covers a genetic distance of 1976 cM with an average distance of 5.8 cM between two markers. A genomic DNA clone representing 1-amino-cyclopropane-1-carboxylic acid (ACC-) synthase gene, involved in ethylene biosynthesis, was also mapped. As in previous mapping studies for watermelon, a large number of AFLP and SRAP markers were skewed away from the 1:1 segregation ratio, and had to be excluded from the final mapping analysis. The stringent mapping criteria (JoinMap 3.0 mapping program) produced linkage groups with marker order consistent with those reported in previous mapping study for watermelon.

Free access

A genetic linkage map was constructed for watermelon based on a testcross population and an F2 population. The testcross map includes 312 markers (RAPD, ISSR, AFLP, SSR, and ASRP). This map covered a genetic distance of 1385 cM, and identified 11 large (50.7-155.2 cm), five intermediate (37.5-46.2 cm), and 16 small linkage groups (4.2-31.4 cm). Most AFLP markers are clustered in two linkage regions, while all other markers are randomly dispersed throughout the genome. Many of the markers in this study were skewed from the classical (Mendelian) segregation ratio of 1:1 in the testcross or 3:1 in the F2 population. The order of the markers within linkage groups was similar in the testcross and F2 populations. Additionally, a cDNA library was constructed using RNA isolated from watermelon flesh 1 week (rapid cell division stage), 2 weeks (cell growth and storage deposition stage), 4 weeks (maturation stage), and 5 weeks (mature fruit) after pollination. More than 1020 cDNA clones were sequenced, and analyzed using the basic local alignment search Tool (BLAST). The sequenced cDNA clones were designated as expressed sequenced tag (EST). The ESTs were searched for simple sequence repeats. About 7% of the ESTs contained SSR motifs. The ESTs containing SSRs are being used to design PCR primers and the putative markers are being tested for polymorphism among the parental lines of the mapping populations. Polymorphic markers will then be mapped using the mapping populations.

Free access