Search Results
The effects of late summer, fall, and winter pruning on the cold hardiness of × Cupressocyparis leylandii (A.B. Jacks. and Dallim.) Dallim. and A.B. Jacks. `Hag gerston Gray' (Leyland cypress) and Lagerstroemia L. `Natchez' (crape myrtle) were determined. Pruning in late summer through early winter significantly reduced the cold hardiness of both taxa. The maximum difference in cold hardiness between pruned trees and controls for × Cupressocyparis leylandii `Haggerston Gray' in October, December, January, and February was 3, 3, 2, and 6C, respectively. The maximum difference in cold hardiness between pruned plants and controls for Lagerstroemia `Natchez' in December, January, and February was 3, 4, and 2C, respectively. Early spring pruning of Leyland cypress and late winter or early spring pruning of crape myrtle are suggested from these data.
Cooling treatments of 2, 4, and 6C/hour or warming at 25, 4, or 0C influenced the cold hardiness estimates of x Cupressocyparis leylandii (A.B. Jacks. and Dallim.) Dallim. and A.B. Jacks. (Leyland cypress), Lagerstroemia indica L. (crape myrtle), and Photinia ×fraseri Dress `Birmingham' (redtip photinia) at four times during the year. New growth from all taxa, especially spring growth, was injured or killed at higher temperatures by the fastest cooling rate and/or by warming at 25C. Cold hardiness of Leyland cypress was unaffected by the cooling and warming treatments. Crape myrtle had a significantly higher lowest survival temperature (LST) when warmed at 25C than at 4 or 0C. Photinia leaves and stems cooled at 6C/hour or warmed at 25C generally resulted in a higher LST than those cooled more slowly or warmed at lower temperatures. Cooling rates of 14C/hour and warming at 0 to 4C should be used in freeze tests with Leyland cypress and crape myrtle. For leaves and stems of photinia, 2C/hour cooling and warming at 0 to 4C should be used.
Proper acclimation of onion (Allium cepa L.) seedlings can enhance winter freeze survival; therefore, the effects of photoperiod-temperature combinations, photoperiod, and plant age on the cold hardiness of short-day onions were investigated. Following acclimation at various photoperiod-temperature regimes, different-aged plants were frozen to various subzero temperatures in an ethylene glycol bath and evaluated for cold hardiness. Older plants were more cold hardy than younger plants. An 11-hour photoperiod-decreasing temperature (20/15 to 10/5C day/night) treatment improved plant cold hardiness over other photoperiod-temperature regimes. Various photoperiods (8-, 11-, 14-, and 24-hour) applied during a 14-day, 3C acclimation treatment before freezing had little effect on plant cold hardiness. However, day 7 foliar and day 14 root evaluations indicated that 81-day-old plants given an 8- or 11-hour photoperiod during the 3C acclimation treatment were less cold hardy than older plants (91 or 112 days) given the same acclimation photoperiod.
The effects of fall and winter pruning on cold hardiness of field-grown Lagerstroemia L. `Natchez' (crape myrtle) were determined. In the first year (1990-1991) pruning prior to January reduced cold hardiness estimates of `Natchez' crape myrtle by 3C compared to controls. In the second year (1991-1992) fall pruning also reduced cold hardiness estimates by 3C on the January and February test dates. Pruning in January or later is recommended for `Natchez' crape myrtle to assure maximum cold hardiness. Similar cold hardiness estimates of `Natchez' crape myrtle were obtained from field trials compared to lath tests conducted the previous year.
The effects of timing of pruning in relation to cold hardiness of X Cupressocyparis leylandii (A. B. Jacks. and Dallim.) Dallim. and A. B. Jacks. `Haggerston Grey' and Lagerstroemia L. `Natchez' were evaluated on 6 test dates from August 1989 to March 1990. Pruning treatments decreased the cold hardiness of both taxa compared to unpruned controls on 5 test dates. Cold tolerance of `Haggerston Grey' decreased for 4 to 5 months following the August and October pruning compared to the unpruned controls. `Haggerston Grey's cold tolerance were reduced by 6C in February. October and December pruning of `Natchez' reduced cold hardiness by 4C in January. However, cold hardiness of January and February pruning treatments was similar to unpruned controls. In general, the data indicated that plants of `Haggerston Grey' pruned in October through February were less cold hardy than plants pruned in August. Ideally, `Natchez' crape myrtle should be pruned in late winter.
The effects of timing of pruning in relation to cold hardiness of X Cupressocyparis leylandii (A. B. Jacks. and Dallim.) Dallim. and A. B. Jacks. `Haggerston Grey' and Lagerstroemia L. `Natchez' were evaluated on 6 test dates from August 1989 to March 1990. Pruning treatments decreased the cold hardiness of both taxa compared to unpruned controls on 5 test dates. Cold tolerance of `Haggerston Grey' decreased for 4 to 5 months following the August and October pruning compared to the unpruned controls. `Haggerston Grey's cold tolerance were reduced by 6C in February. October and December pruning of `Natchez' reduced cold hardiness by 4C in January. However, cold hardiness of January and February pruning treatments was similar to unpruned controls. In general, the data indicated that plants of `Haggerston Grey' pruned in October through February were less cold hardy than plants pruned in August. Ideally, `Natchez' crape myrtle should be pruned in late winter.
Cold hardiness and carbohydrate content of 4 cultivars of field-grown southern magnolia (Magnolia grandiflora L.) were determined monthly during the 1992-1993 winter. Initially, `Claudia Wannamaker', `Little Gem', `Timeless Beauty', and `Victoria' had similar stem and leaf cold hardiness estimates of -6C in October. However, by February `Claudia Wannamaker' and `Victoria' stems were 6 and 3C more cold hardy than `Little Gem' and `Timeless Beauty' stems. `Claudia Wannamaker' leaves were also 6C more cold hardy than `Little Gem' and `Timeless Beauty' leaves in February. Carbohydrate analysis indicates increases in oligosaccharides during cold acclimation in fall.