Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Nobuko Sugimoto x
  • All content x
Clear All Modify Search
Free access

Nobuko Sugimoto and Randy Beaudry

The objective of the experiment was to determine developmental changes in major aroma profiles in `Jonagold' apple (Malus ×domestica Borkh.) and analyze climacteric fruit characteristics. Changes in internal ethylene production, respiration, skin color, texture, and aroma concentration were measured during maturation and ripening of `Jonagold' apple fruit. Patterns for skin color, starch, and internal ethylene content were typical for the variety. Volatile compounds and CO2 increased after a rapid increase in ethylene production. Total ester emission peak coincided with fruit softening. Hexyl acetate, 2-methylbutyl acetate, butyl acetate, and hexyl 2-methylbutanoate were found to be the major volatile compounds detected by GC/MS. Long chain esters, such as hexyl acetate and butyl acetate, contributed during the early stages of ripening and short chain esters such as n-propyl acetate and butyl propanoate increased later. Esters are formed by combining alcohol moiety with CoA derivative of fatty acid moiety by the action of alcohol acyl transferase (AAT). The alcohols butanol, 2-methylbutanol, propanol, and hexanol increased at an earlier developmental stage than the esters for which they acted as substrates.

Free access

Nobuko Sugimoto, A. Daniel Jones, and Randolph Beaudry

The relationship among the free amino acid content, the expression of genes related to branched-chain amino acid metabolism {branched-chain aminotransferase [BCAT], α-keto acid decarboxylase [pyruvate decarboxylase (PDC)], and threonine deaminase [TD]}, and the production of branched-chain (BC) esters during ripening and senescence in ‘Jonagold’ apple fruit (Malus ×domestica) was studied. Eighteen amino acids were measured by liquid chromatography coupled with tandem mass spectrometry. The content for all amino acids changed with developmental stage and some shared similar patterns of accumulation/diminution. The pattern for isoleucine differed from all other amino acids, increasing more than 20-fold during the ripening process. The onset of the increase was concomitant with the onset of increasing ethylene and BC ester production and the content remained elevated even during senescence. The elevated isoleucine levels are consistent with an increase in the flux through the pathway leading to the formation and degradation of the isoleucine precursor α-keto-β-methylvalerate, which is used for production of BC esters containing 2-methylbutanol and 2-methylbutanoate moieties. Unexpectedly, the content of threonine, the amino acid from which isoleucine is thought to be derived in plants, did not change in concert with isoleucine, but rather declined somewhat after ripening was well underway. Patterns in the expression of some, but not all, of the putative BCAT and PDC genes appeared to reflect the rise and fall in ester formation; however, the expression of putative TD genes did not change during ripening. The patterns in gene expression and amino acid content are interpreted to suggest that the synthesis of α-keto-β-methylvalerate and isoleucine during apple ripening may depend on an as yet uncharacterized pathway that bypasses threonine, similar to the citramalate pathway found in some bacteria.

Open access

Alejandra Ferenczi, Nobuko Sugimoto, and Randolph M. Beaudry

The volatile profile of ‘Redchief Delicious’ apple (Malus ×domestica Borkh.) fruit was evaluated at 18 time points from 3 weeks before to 8 weeks after onset of autocatalytic ethylene production to capture the dynamics associated with development from mature green to senescent fruit. Minor amounts of ester production began several days before the onset of ethylene production. Ester production rose rapidly as internal ethylene levels increased beyond 22 nmol·L−1 (0.5 µL·L−1). Peak ester production roughly coincided with maximum ethylene synthesis, declining thereafter. Ester production was further evaluated according to the acid- (alkanoate) and alcohol- (alkyl) derived portions of the ester. The maximum rate of production for a given ester tended to occur later in development as the chain length of the alcohol-derived portion declined. The production rate for many esters paralleled the rate of emanation of their respective alcohol substrates, suggesting that availability of the alcohols limits ester production more than availability of the acid substrates. Combining production rates with sensory descriptors and human sensitivity to individual volatiles permitted approximations of aroma sensations likely engendered by the fruit throughout ripening. Overripe and alcoholic sensations are predicted to increase 2 weeks after the initiation of ripening in response to an increase in the production of ethyl esters. Acetate esters predominated, comprising 50% to 80% of esters throughout maturation and ripening, indicating that the substrate acetyl-CoA may be at saturating levels for alcohol acyl transferase (AAT) at the final step of ester formation. Acetate feeding did not enhance ester production, although label from 13C-acetate was extensively incorporated into esters. The data are consistent with the action of multiple AAT isozymes differing in activity and substrate preference. Incorporation of labeled 13C-acetate into precursors of esters, alcohols, and acids, reflected ester biosynthesis via 1- and 2-carbon chain elongation pathways in ripening ‘Redchief Delicious’ apple fruit.

Free access

Nobuko Sugimoto, Steve van Nocker, Schuyler Korban, and Randy Beaudry

A microarray containing over 10,000 gene fragments was used to link changes in gene expression with changes in aroma biosynthesis in ripening apple (Malus ×domestica Borkh). The microarray was probed with fluorescent-tagged cDNA derived from RNA extracted from `Jonagold' apple skin and cortex tissue representing eight distinct physiological stages spanning 70 days during ripening and senescence. The ripening stages, in chronological order, were: 1) early preclimacteric; 2) late preclimacteric and onset of trace ester biosynthesis; 3) onset of the autocatalytic ethylene and rapidly increasing ester biosynthesis; 4) half-maximal ester biosynthesis and engagement of the respiratory climacteric; 5) near maximal ester biosynthesis, peak in respiratory activity, and the onset of rapid tissue softening; 6) maximal ester biosynthesis prior to its decline, the conclusion of the respiratory climacteric, and the completion of tissue softening; 7) midpoint in the decline in ester biosynthesis and maximal ethylene biosynthesis; and 8) postclimacteric minimum in ester production. Patterns in gene expression reflecting the rise and fall in ester formation were found in some putative genes for beta-oxidation (acyl-CoA oxidase, enoyl-CoA hydratase, and acetyl-CoA acetyl transferase), ester formation (aminotransferase, alcohol dehydrogenase, and alcohol acyl transferase), and fatty acid oxidation (lipoxygenase), but not fatty acid biosynthetic genes. A marked decline coinciding with the onset of ester production was detected in several putative genes for ADH.