Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: Nina Bassuk x
- Journal of the American Society for Horticultural Science x
New shoot growth of Carpinus betulus L. fastigiata was subjected to stock plant etiolation and stem banding (a 2.5-cm square of Velcro applied to the shoot base) treatments and sampled for histological study at intervals over a 16-week period of shoot development following etiolation. Effects of partial shading on histology of the stem were also investigated. Numerous histological changes were noted with stem development and stock plant treatment. Among these were a reduction in lignification of the secondary xylem and thickness of the periderm, and an increase in the percentage of sclereid-free gaps in the perivascular sclerenchyma with etiolation. Concomitant propagation studies revealed significant etiolation, shading, and banding effects on rooting percentages and root numbers. Rooting capacity was modelled using linear combinations of the widths of nonlignified secondary xylem, cortical parenchyma and periderm, as well as the percentage of gaps in the sclerenchymatic sheath remaining free of sclereids. It is proposed that the development of sclereids in potential rooting sites reduces rooting potential. The exclusion of light during initial shoot development retards sclereid development by up to 3 months following treatment, which correlates well with observed increases in the rooting potential of etiolated stems.
Single-node `Royalty' rose (Rosa hybrida L.) cuttings were used to examine the relationship between adventitious root formation, budbreak, and ethylene synthesis following IBA treatment. IBA was applied as a lo-second basal quick dip before rooting, and AIB, GA3, STS, and ethephon were applied either as basal dips or foliar sprays. IBA application increased rooting and inhibited budbreak of cuttings. IBA 2 600 mg·liter-1 greatly inhibited budbreak during 4 weeks of rooting. IBA treatment stimulated ethylene synthesis, which was inversely correlated with budbreak of cuttings. Ethephon also significantly inhibited budbreak. Budbreak of rose cuttings was completely prevented by repeated ethephon sprays used to maintain high endogenous ethylene levels during the first 10 days. Treatment with STS, an ethylene-action inhibitor, improved budbreak. The inhibition of budbreak by IBA treatment resulted primarily from elevated ethylene levels. Root initiation and root elongation of cuttings initially inhibited budbreak, but later promoted budbreak. Chemical names used: indole-3-butyric acid (IBA); gibberellic acid (GA3); silver thiosulfate (STS); AIB, aminoisobutyric acid (AIB); (2-chloroethyl)-phosphoric acid (ethephon).
In a study of stock plant etiolation and stem banding, stem cuttings of upright European hornbeam (Carpinus betulus L. `Fastigiata') were taken at 2-week intervals over 4 months following budbreak and rooted under intermittent mist for 30 days. Percent rooting and root counts declined with increasing cutting age. Stock plant etiolation and stem banding increased percent rooting and root counts throughout the study, with the combination of both treatments yielding the best rooting. In nontreated stems, > 75% rooting was achieved only within 4 weeks of budbreak. Etiolation and stem banding resulted in rooting ≥ 75% up to 3 months after budbreak. In two shading studies, stock plants were grown in a glass greenhouse under 0%, 50%, 75%, or 95% shade, or initially etiolated (100% shade) for 1.5 days. Cuttings were taken after 2.5 and 60 days and treated with IBA concentrations ranging from 0 to 4.9 mm before rooting under intermittent mist for 30 days. Percent rooting increased proportionally to the degree of shading, with a maximum response at 95% shade. Cuttings taken at 60 days were less responsive to etiolation and shading than those harvested at 25 days. Auxin concentration interacted with shading to yield, at 95% shade and 3.7 mm IBA, the highest rooting percentage and the greatest root counts and lengths. Light exclusion by etiolation, stem banding, or shading can extend the cutting propagation season by increasing rooting responses and increasing the sensitivity of stem cuttings to exogenously applied auxin. Chemical name used: 1H-indole-3-butyric acid (IBA).
Abstract
A modification of the traditional technique of etiolation and blanching, using Velcro adhesive fabric strips as the blanching material, was used with success in improving cutting propagation of a wide range of difficult-to-root woody species. Stockplants were etiolated under black cloth at budbreak, followed by banding for a period of 4 weeks, to produce a cutting with an etiolated base. Rooting of softwood cuttings from 18 of 21 species tested was improved significantly by these stockplant pretreatments. The use of Velcro as the banding material facilitated blanching, permitted the application of rooting hormone as a part of the blanching procedure, wounded underlying stem tissues, and resulted occasionally in the formation of adventitious roots on intact shoots.
Tissue osmotic potential(Ψπ) and solute constituents were evaluated in leaves and roots of well-watered and water-stressed Prunus avium L. × pseudocerasus Lindl. `Colt' and Prunus cerasus L. `Meteor'. Osmotic potential at full turgorΨπ,sat decreased in response to water stress for leaves and roots of both cultivars. For `Colt', a cultivar with an indeterminate growth habit,Ψπ,sat decreased by 0.56 MPa and 0.38 MPa for terminal expanding leaves and older expanded leaves, respectively. For `Meteor', a cultivar with a determinate growth habit,Ψπ,sat decreased by ≈0.47 MPa in both terminal and older leaves. RootΨπ,sat was alike for both cultivars and showed a similar decrease of 0.20 MPa in response to water stress. Roots had considerably higherΨπ,sat than did leaves in both cultivars, irrespective of irrigation treatment. Soluble carbohydrates and potassium (K+) were the major solute constituents in both cultivars. Of the soluble carbohydrates, sorbitol was found in the greatest concentration and accounted for the bulk of water stress-induced solute accumulation in both cultivars. Regardless of the irrigation treatment, mature leaves of `Meteor' consistently had lowerΨπ,sat (typically 0.4 MPa) than `Colt'. This variation in Ψπ,sat between Prunus cultivars suggests the potential for selection of cultivars with low Ψπ,sat and possibly superior drought resistance.
The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.
In our study, we investigated whether root hydraulic conductance is related to post-transplant recovery. We used two Quercus species that differ in their transplant ability, Q. bicolor and Q. macrocarpa. Q. bicolor easily survives transplanting, whereas Q. macrocarpa often does not. We compared root hydraulic conductance after transplanting between control (without root pruning) and root-pruned, 1-year-old, small-caliper trees. We also examined the effects of transplant timing on post-transplant recovery of large-caliper trees. Hydraulic conductance in fine roots was correlated with recovery of the two Quercus species after transplanting. Six months after transplanting, small-caliper Q. bicolor trees had similar specific hydraulic conductance (K S) in fine roots compared with the K S before root-pruning, whereas fine root K S in small-caliper Q. macrocarpa trees decreased. Lower pre-dawn and midday xylem water potential in root-pruned Q. macrocarpa 6 weeks after transplanting indicates that root-pruned Q. macrocarpa experienced transplanting-induced water stress. For large-caliper trees, all Q. macrocarpa trees exhibited typical symptoms of transplant shock regardless of transplant timing, which was the result of higher vulnerability to mild water stress compared with Q. bicolor, resulting in a large reduction in fine root K S. Fine root K S in spring-transplanted Q. bicolor trees was much higher than that in fall-transplanted trees, implying spring transplanting is optimal for Q. bicolor. Other intrinsic characteristics of the species should be considered in the future when making better decisions on transplant timing such as xylem anatomy, carbon storage, rhizosphere conditions, and plant growth.