Search Results

You are looking at 1 - 10 of 44 items for

  • Author or Editor: Nihal C. Rajapakse x
Clear All Modify Search

Changes in sugar composition during maturation and ripening of eight Asian pear cultivars were evaluated. Total soluble sugars (TSS) increased gradually throughout the maturation and averaged 10% to 13% in mature fruit. All cultivars, except `Shinko' and `Nijisseiki', had accumulated ≥10% TSS by 100 days after full bloom (DAFB). Starch accumulated during early stages of Asian pear fruit development but decreased as the maturity progressed coinciding with the rise in soluble sugars. Sorbitol, a sugar alcohol, was predominant in immature fruit and accounted for 35% to 60% of TSS fraction depending on the cultivar. Fructose rapidly increased during early maturation. Glucose increased during early maturation, but the increase was much smaller than that of fructose. Sucrose was low (<4%) in immature fruit but accumulated rapidly late in the maturation and continued to increase until harvest. In mature `Hosui', `Kosui', `Nijisseiki', `Shinsui', `Shinko', and `Ichiban' fruit, fructose was the predominant sugar which accounted for 47% to 60% of the TSS fraction. Glucose and sucrose accounted for 13% to 17% and 7% to 12%, respectively, in those cultivars. In mature `Shinseiki' fruit, sucrose was the predominant sugar (44% of TSS), while fructose and glucose accounted for 33% and 8%, respectively. Sucrose and fructose were present in equal amounts (29%) in mature `Chojuro' fruit. Late accumulation of sucrose in Asian pear cultivars suggest that sufficient time should be allowed before harvesting to obtain sweeter fruit.

Free access

The interactions of light quality and growing season on growth and carbohydrate content of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] plants were evaluated using 6% CuSO4 and water (control) as spectral filters. Light transmitted through the CuSO4 filter significantly reduced plant height and internode length compared to control plants regardless of the season. However, the degree of response varied with growing season. Light transmitted through CuSO4 filters delayed flowering. Total number of flowers was not affected by spectral filter, but plants grown under CuSO4 filter had smaller flowers than those grown under the control filter. Light transmitted through CuSO4 filter resulted in reduced leaf and stem soluble sugar (sucrose, glucose, and fructose) and starch concentrations regardless of the growing season. However, the magnitude of reduction was greater in spring- than in fall-grown plants. Stems of fall-grown plants had more starch deposition than spring-grown plants under both filters. Filters with specific spectral characteristics can be used as alternative means of producing compact plants in the greenhouses, however, the delay in flowering and smaller flowers could limit their use for growth control of plants intended for flower production.

Free access

The role of light quality on growth, flowering, and postharvest characteristics of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) was evaluated in two growing seasons using 4% CuSO4 and water (control) as spectral filters. The CuSO4 filter significantly reduced plant height and internode length. However, the height reduction was smaller in the 1994-95 season (9%) than in the 1995-96 growing season (32%). The number of days to flower bud appearance and flower opening, and the number and diameter of flowers were not significantly affected by the spectral filters in either season. The CuSO4 filters reduced flower longevity by 3 days in nonstored plants, and by 5 days when plants were subjected to 1 week storage at 4 °C prior to placing in the postharvest room. Results suggest that spectral filters are effective in controlling height and producing compact Easter lily plants without causing a delay in flowering or reducing number of flowers per plant but flower longevity can be adversely affected.

Full access

The role of light quality and quantity in regulating growth of vegetative Dendranthema × grandiflorum (Ramat.) Kitamura was evaluated using CuSO4 solutions and water (control) as spectral filters. Copper sulfate filters increased the red (R): far-red (FR) and the blue (B): R ratios (R = 600 to 700 nm; FR = 700 to 800 nm; B = 400 to 500 urn) of transmitted light. Photosynthetic photon flux (PPF) under 4%, 8% and 16% CuSO4 filters was reduced 26%, 36%, and 47%, respectively, from natural irradiance in the greenhouse, which averaged ≈ 950 μmol·m-2·s-1. Control treatments were shaded with Saran plastic film to ensure equal PPF as the corresponding C uSO4 chamber. Average daily maxima and minima were 26 ± 3C and 16 ± 2C. At the end of the 4-week experimental period, average height and internode length of plants grown under CuSO4 filters were ≈ 40% and 34% shorter than those of plants grown under control filter. Reduction in plant height and internode length was apparent within 1 week after the beginning of treatment. Total leaf area (LA) was reduced by 32% and leaf size (LS) was reduced by 24% under CuSO4 filters. Specific leaf weight (SLW) was higher under CuSO4 filters than for the controls. Irradiance transmitted through CuSO4 filters reduced fresh and dry leaf weights by 30%. Fresh and dry stem weights of plants grown under CuSO4 filters were 60% lower than those of controls. Relative dry matter accumulation into leaves was increased in plants grown under CuSO4 filters while it was reduced in stems. A single application of GA3 before irradiation partially overcame the height reduction under CuSO4 filters, suggesting GA biosynthesis/action may be affected by light quality. Our results imply that alteration of light quality could be used to control chrysanthemum growth as an alternative method to conventional control by chemical growth regulators. Chemical names used: gibberellic acid (GA)

Free access

Plant response to photoselective plastic films with varying spectral transmission properties was tested using lisianthus (Eustoma grandiflorum) `Florida Pink', `Florida Blue', and `Florida Sky Blue'. Films were designated YXE-10 (far-red light-absorbing film) and SXE-4 (red light absorbing film). Light transmitted through YXE-10 films reduced plant height compared to control plants by 10% (`Florida Blue'), and stem dry weight by 19% to 40%, but the response varied by cultivar. Internode length was reduced by 10% to 19% when `Florida Pink' and `Florida Sky Blue' plants were grown under YXE-10 films. Leaf and root dry weights were not affected by YXE-10 films, with the exception that `Florida Sky Blue' plants had a lower leaf dry weight than the control plants. Light transmitted through SXE-4 films increased plant height of `Florida Pink' plants by 15% but not of `Florida Blue' or `Florida Sky Blue.' Regardless of cultivar, dry weight of leaf, stem and root tissue was not affected by SXE-4 films as compared to control films. The average number of days to flower and bud number were not affected by YXE-10 or SXE-4 films, regardless of cultivar. The results suggest that selective reduction of far-red wavelengths from sunlight may be an alternative technique for greenhouse production of compact plants, but the magnitude of the response is cultivar specific.

Full access

Transpiration rates of chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] plants grown under spectral filters were evaluated as part of an investigation on using light quality to regulate plant growth. The 6% CuSO4·5H2O spectral filter reduced photosynthetic photon flux density in red (R) and far red (FR) wavelengths and increased the R: FR and blue (B): R ratios (B = 400 to 500 nm; R = 600 to 700 nm; FR = 700 to 800 nm) of transmitted light relative to the water (control) filter. After 28 days, cumulative water use of plants grown under CuSO4 filters was ≈37% less than that of control plants. Transpiration rates were similar among plants grown under CuSO4 and control filters when expressed as leaf area, a result suggesting that the reduced cumulative water loss was a result of smaller plant size. Plants grown under CuSO4 filters had slightly lower (10%) stomatal density than control plants. Light transmitted through CuSO4 filters did not alter the size of individual stomata; however, total number of stomata and total stomatal pore area per plant was ≈50% less in plants grown under CuSO4 filters than in those grown under control filters due to less leaf area. The results suggest that altering light quality may help reduce water use and fertilizer demands while controlling growth during greenhouse production.

Free access

The response of chrysanthemum plants to varying R:FR ratios and phytochrome photoequilibrium values (Ø = Pfr/Ptot) was evaluated by growing plants under 6%, or 40% CuSO4 and water spectral filters. Using a narrow band-width (R = 655-665 and FR = 725-735 nm) and a broad bandwidth (R = 600-700 and FR = 700-800 nm) for R:FR calculation, 6% CUSO4 filter transmitted light with greater R:FR (3.9) and grater Ø (0.81) than 40% CuSO4 or water filters. Light transmitted through 40% CuSO4 and water filters had a similar narrow band R:FR ratio (1.2), but the broad band R:FR ratio (2.1) of 40% CuSO4 filter was higher than water filter. Estimated Ø value was similar for both water and 40% CuSO4 filters. Final height of plants grown in CuSO4 chambers was about 30% less than the plants in control chambers. The results suggest that broad band R:FR ratio correlated more closely to plant response than the narrow band R:FR ratio.

Free access

The role of light quality on growth, flowering, and postharvest characteristics of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) was evaluated in two growing seasons using 4% CuSO4 and water (control) as spectral filters. The CuSO4 filter significantly reduced plant height and internode length. However, the height reduction was smaller in the 1994—95 season (9%) than in the 1995—96 growing season (32%). The number of days to flower bud appearance and flower opening, and the number and diameter of flowers were not significantly affected by the spectral filters in either season. The CuSO4 filters reduced flower longevity by 3 days in nonstored plants, and by 5 days when plants were subjected to 1 week storage at 4 °C prior to placing in the postharvest room. Results suggest that spectral filters are effective in controlling height and producing compact Easter lily plants without causing a delay in flowering or reducing number of flowers per plant but flower longevity can be adversely affected.

Free access

Morphological and physiological changes during maturation and ripening of eight Asian pear cultivars grown in the southeastern United States were evaluated. Fruit size increased throughout maturation. Flesh firmness decreased as fruit matured and averaged ≈30 to 35 N at harvest maturity. The average TSS in mature fruit ranged from 10% to 13%, with `Shinko' having the lowest and `Shinsui' having the highest. TSS increased during 4 weeks of storage at 1C, but the increase was greater in immature fruit than in mature fruit. Respiration rate declined as fruit matured. Ethylene production was low in `Hosui', `Kosui', `Nijisseiki', `Shinseiki', `Chojuro', and `Shinko' fruit. Mature `Ichiban' and `Shinsui' fruit produced high amounts of ethylene. `Kosui', `Shinsui', `Chojuro', and `Ichiban' fruit showed a climacteric rise in respiration and ethylene production at 20C, while `Hosui', `Nijisseiki', `Shinseiki', and `Shinko' behaved as nonclimacteric fruit. Ethylene production by 1C-stored `Kosui', `Shinsui', `Chojuro', and `Ichiban' fruit was increased on removal to 20C. Glucose and fructose were low during early maturation but sharply increased ≈80 to 85 days after full bloom (DAFB). Sucrose was low in immature fruit but accumulated rapidly late in maturation ≈100 to 107 DAFB. In mature `Hosui', `Kosui', `Nijisseiki', `Shinsui', `Shinko', and `Ichiban' fruit, fructose was the predominant sugar, while in `Shinseiki' and `Chojuro' fruit, sucrose was the predominant sugar.

Free access