Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Nicole L. Shaw x
Clear All Modify Search
Full access

Nicole L. Shaw and Daniel J. Cantliffe

Mini or “baby” vegetables have become increasingly popular items for restaurant chefs and retail sales. Squash (Cucurbita pepo) are generally open-field cultivated where climate, insect, and disease pressures create challenging conditions for growers and shippers who produce and market this delicate, immature fruit. In order to overcome these challenges, in Spring 2003 and 2004, 18 squash cultivars, including zucchini, yellow-summer, patty pan/scallop, and cousa types, were grown hydroponically in a passively ventilated greenhouse and compared for yield of “baby”-size fruit. Squash were graded as “baby” when they were less than 4 inches in length for zucchini, yellow-summer, and cousa types and less than 1.5 inches diameter for round and patty pan/scallop types. In both seasons, `Sunburst' (patty pan) produced the greatest number of baby-size fruit per plant, while `Bareket' (green zucchini) produced the least. The zucchini-types produced between 16 and 25 baby-size fruit per plant in 2003. The yellow summer squash-types produced on average 45 baby fruit per plant. The production of the patty pan/scallop types ranged from 50 to 67 baby-size fruit per plant depending on cultivar. The cousa types produced approximately 30 baby-size fruit. Total yields were lower in 2004 due to a shortened season. Squash plants will produce numerous high quality baby-sized fruit when grown hydroponically in a reduced pesticide environment of a greenhouse where they can be harvested, packaged, and distributed to buyers daily. The cultivars Hurricane, Raven, Gold Rush, Goldy, Sunray, Seneca Supreme, Supersett, Butter Scallop, Sunburst, Patty Green Tint, Starship, Magda, and HA-187 could be used for hydroponic baby squash production.

Full access

Juan C. Rodriguez, Nicole L. Shaw and Daniel J. Cantliffe

Galia-type muskmelon (Cucumis melo cv. Gal-152) was grown as a fall and spring crop to determine the effect of plant density (1.7, 2.5, 3.3, and 4.1 plants/m2) on yield, fruit quality, plant growth, and economic feasibility for producing the crop in a greenhouse. Plant density had no influence on the early or total number of fruit produced per plant. Marketable yields increased linearly from 11.0 to 20.0 kg·m−2 in fall and from 21.9 to 48.3 kg·m−2 in spring with increasing plant density. Mean fruit size was unaffected by plant density during fall (mean weight, 1.0 kg), but was reduced linearly during spring from 1.8 kg at 1.7 plants/m2 to 1.5 kg at 4.1 plants/m2. Soluble solids content was unaffected by plant density in either fall or spring and averaged 10.1% in both seasons. Number of leaves per plant was unaffected by plant density, but internode length was increased at 4.1 plants/m2 compared with plants from the other densities. Increasing the plant density of ‘Gal-152’ muskmelon grown under protected cultivation led to increased yields in both fall and spring without negatively impacting fruit quality. When the market price is $1.44/kg, increased yields at 3.3 plants/m2 can potentially increase net returns over yields of plants spaced at 2.5 plants/m2 by 25% and nearly double net returns from plants grown at 1.7 plants/m2.

Full access

Nicole L. Shaw, Daniel J. Cantliffe, Julio Funes and Cecil Shine III

Beit Alpha cucumber (Cucumis sativus) is an exciting new greenhouse crop for production in the southeastern U.S. and Florida. Beit Alpha cucumbers are short, seedless fruit with dark-green skin and an excellent sweet flavor. Beit Alpha-types are the leading cucumber types in the Middle Eastern market and have gained recent popularity in Europe. Beit Alpha cucumbers grown hydroponically under a protected structure have prolific fruit set, yielding more than 60 high-quality fruit per plant during one season. U.S. hydroponic vegetable production is generally associated with structure and irrigation investments which are costly as well as other inputs, such as the media, which must be replaced annually or with each crop. Beit Alpha cucumber `Alexander' was grown in Spring 2001 and 2002 in a passive-ventilated high-roof greenhouse in Gainesville, Fla. Three media types, coarse-grade perlite, medium-grade perlite, and pine bark, were compared for efficiency of growing cucumbers (production and potential costs). During both seasons, fruit yield was the same among media treatments [average of 6 kg (13.2 lb) per plant]. Irrigation requirements were the same for each type of media; however, leachate volume was sometimes greater from pots with pine bark compared to either grade of perlite suggesting a reduced need for irrigation volume when using pine bark. Pine bark is five times less expensive than perlite and was a suitable replacement for perlite in a hydroponic Beit Alpha cucumber production system.

Free access

Nicole L. Shaw, George J. Hochmuth, Steven A. Sargent and Ed A. Hanlon

`Camelot' bell pepper was grown in a N fertigation study on sandy soil using polyethylene-mulched and fumigated beds. Portions of N (0%, 33%, 67%, 100% of total season N) were applied at bed formation. The remaining N was injected weekly into the drip irrigation system. Total N application treatments were 64, 128, 192, and 256 kg·ha–1. Early and total-season marketable fruit yields increased linearly with N rate. Preplant fertilizer proportion did not influence early yields, but late and total-season marketable fruit yields decreased linearly as preplant fertilizer proportion increased. Petiole sap NO3-N concentration increased with increasing N rates, but decreased linearly as preplant fertilizer proportion increased. Petiole sap NO3-N concentrations fell below critical levels for all N rates and preplant fertilizer proportions early in the season. Whole-leaf N concentrations were higher than critical values (>40 g·kg–1) throughout the season. Preplant fertilizer proportion had a significant linear effect on whole-leaf N concentrations for all sampling periods. Petiole sap was better correlated to yield data than whole-leaf N.

Open access

Elena E. Lon Kan, Steven A. Sargent, Daniel J. Cantliffe, Adrian D. Berry and Nicole L. Shaw

Datil hot pepper (Capsicum chinense) has potential for increased production due to its unique, spicy flavor and aroma. However, few reports have been published related to postharvest handling characteristics. The purpose of this study was to determine the effect of harvest maturity on fruit quality under simulated commercial storage conditions. ‘Wanda’ datil pepper plants were grown hydroponically under protected culture. Fruit were harvested at yellow and orange maturity stages, placed in vented clamshell containers, and stored at 2, 7, or 10 °C for 21 days. Peppers harvested at yellow stage maintained greater quality than orange peppers during storage at all temperatures. Marketable fruit after 21 days for peppers harvested at the yellow stage was 94% (2 °C), 88% (7 °C), and 91% (10 °C); that for orange-stage peppers was 68%, 74%, and 82% for the same respective temperatures. No chilling injury (CI) symptoms were observed in these tests. Initial pepper moisture content was 90%, decreasing only slightly during 21 days of storage; weight loss ranged from 2% to 8%. Soluble solids content (SSC) was greater for peppers harvested at the orange stage (9.5%) than for those at yellow stage (7.8%). Neither harvest maturity nor storage temperature affected total titratable acidity (TTA; 0.13%) or pH (5.3). Respiration rate varied with temperature but not by harvest maturity and ranged from 12 to 25 mg·kg−1 per hour after 8 days of storage. Peppers harvested orange contained double the amount of total carotenoids as yellow fruit. Carotenoid content for yellow and orange peppers was 58 and 122 µg·g−1, respectively. Capsaicinoid content ranged from 1810 to 4440 µg·g−1 and was slightly greater for orange-harvested peppers. Datil peppers harvested at the yellow stage and stored in vented clamshell containers had better quality than peppers harvested at the orange stage after 21 days at 2 °C.