Search Results
You are looking at 1 - 9 of 9 items for :
- Author or Editor: Neil O. Anderson x
- HortTechnology x
This paper presents a case study for use as an active learning tool with students in a floriculture potted plant production class. Students work together in small groups (three to four) to pose answers to a dilemma. With this case study, students quickly learn the names of their colleagues and work together outside-of-class to solve the assignment. Each student role-plays being hired on as a new potted plant production specialist. A memorandum from the Board of Directors is delivered on their first day of work at Floratech, a company specializing in potted plants. Floratech is a finisher company, purchasing plugs (vegetative or seed-propagated crops) from plug producers and rooting stations, and selling their final products to both wholesale and retail markets. Objectives of this case study are to determine 1) the students' fluency in terminology for potted plant production, 2) ideal production time/labor inputs for the Floratech potted crops, and 3) limiting factor(s) preventing each crop from reaching this goal. As the students progress through the course material, they refer to the memorandum for clarification of unknown terms. Unresolved questions are raised during the semester (in the classroom and during laboratory tours) to other players interacting in the memorandum, i.e., Floratech staff (growers, sales people, management), its suppliers (rooting stations, plug producers, distributors, breeders, producers, operations, quality control), and customers (wholesale, retail). This case study was tested with undergraduate students enrolled in HORT 4051, Floriculture Production and Management I (Potted Plants) at the University of Minnesota, St. Paul, during Fall Semester 1999.
A case study is presented for use as an active learning tool for students in a floriculture potted plant production class. This is the second case study developed for Floratech, a potted plant finisher. Students work together in small groups to solve the proposed problems; each student role-plays as a Potted Plant Production Specialist. A memorandum from the Board of Directors is delivered in their first month on the job at Floratech. Objectives of this case study are to determine the students' fluency in terminology and crop-specific cultural requirements for potted plant production of cyclamen (Cyclamen persicum) and primrose (Primula sp.) as well as their ability to setup a scientifically rigorous and unbiased cultivar trial for Floratech personnel and selected customers. Students research the latest commercial catalogs to determine which species, series, and cultivars are available, as well as their relative merits, prior to choosing the appropriate cultivars to include in the trial. The trial setup has a space limitation of 2,000 ft2 (186 m2). This case study was tested with 20 undergraduate students during Fall Semester 1999. The case study demonstrated the students' fluency with terminology and crop-specific cultural requirements for both crops. Their ability to set up a scientifically rigorous trial varied widely, often with an inadequate sampling of cultivars and excessive replications (56 ± 37 cyclamen to 132 ± 65 primrose). A mean ± sd of 4 ± 1 cyclamen and 7 ± 3 primrose series were chosen. The number of cultivars varied from 6 ± 2 cyclamen to 9 ± 4 primrose and the number of distributors was similar for the crops. Trial design and additional questions raised by the case study were discussed in class and applied in a cultivar trial in the lab. Unanswered questions were used as learning opportunities during class tours with local growers.
The increasing number of crops being grown for the floriculture market has frustrated educators faced with limited classroom and laboratory time. Time constraints necessitate selection of crops to serve as examples of floral induction treatment(s) and provide an accurate scope of production requirements for all cultivated species. Since flowers are the primary reason for purchasing most floricultural products—with the notable exception of cut and potted foliage—the various treatments required for flower bud initiation and development were used to categorize potted plants. New and old crops (>70 species) are categorized for flower bud initiation and development requirements, including photoperiod (short, long day, day neutral; facultative/obligate responses), vernalization, temperature, autonomous, rest period, and dormancy. Crop-specific temperature, irradiance, and photoperiod interactions are noted, as well as temperature × photoperiod interactions. A course syllabus can be modified to ensure that at least one crop from each category is presented to serve as a model. It is recommended that the class focuses on example crop(s) from each floral induction category and then reviews other crops within each category for differences or similarities. This method allows coverage of floral induction categories without leaving information gaps in the students' understanding. This method was used with students in the Fall 1999, floriculture production class (Hort 4051) at the University of Minnesota, St. Paul.
Historic ignorance of species’ native range, expansion due to unintentional involvement by vectors, and their quiet evolution has caused several invasive species to become “poster children,” such as purple loosestrife (Lythrum salicaria), reed canarygrass (Phalaris arundinacea), and others. Common misconceptions on how these became problematic have involved a variety of causes, including ignorance of species’ ability to intercross and create introgressive hybrids, lack of insects for control, wind pollination, and intercontinental distribution from their native range. Current research focuses on how misappropriating the historical contexts can reverse our misconceptions of native species being noninvasive and how this affects control by land managers. Purple loosestrife and reed canarygrass will be used as example species to demonstrate challenges that native vs. exotic, intra-, and interspecific differences confer to land managers. Issues such as a lack of phenotypic differences challenge land managers’ charge to control invasive individuals yet retain the noninvasives. This is fraught with challenges when native vs. exotic status is invoked or cultural values are entwined. To avoid a monumental impasse, particularly when native and exotic types are phenotypically indistinguishable, this dilemma could be solved via modern techniques using molecular biology.
Genetically modified organism (GMO) crops provide new trait(s) that may benefit floral designers and consumers. A limited array of GMO cut flower cultivars exist in the floral markets worldwide: nine carnations (Dianthus caryophyllus) and one rose (Rosa ×hybrida). Labeling GMO flowers in the United States is not required. Thus, most distributors, flower auctions, brokers, wholesalers, floral designers and consumers are not aware that they exist. To test the acceptance of GMO cut flowers with potential future floral designers, n = 121 students enrolled in Floral Design (HORT 1013) at the University of Minnesota during 2005–07, 2009, and 2011, designed with standard and miniature GMO Moon™ series carnations. Each student created a Hogarth design with both types of carnations and assembled a price sheet. Students examined the differences between GMO lavender/purple carnations and those created with classic methods of spraying, dipping, or infusion. In 2009 only, students were also assigned to write a marketing paragraph about their GMO floral design. Each year, students were given an identical question on a subsequent midterm examination to determine their position on GMO cut flowers, including development of a floral shop policy to inform customers. Student examination responses ranged from not carrying GMO products [1/121 (0.8% response)], offering GMO/non-GMO carnation options to the consumer [81/121 (66.9% response)], or only selling only GMOs [33/121 (27.3% response)] that differed significantly from a 1:1:1 chi-square (χ2). A significant majority of students would inform their customers of the GMO crops [89/121 (73.6% response)]. In several instances, consumers were not to be informed of the GMO nature unless they queried about the higher price point. Similarly, marketing paragraphs did not uniformly highlight the GMO nature of the flowers. Implications for the next generation of floral designers demonstrate that, with the exception of students in 2005–06, most would sell both GMO and non-GMO flowers with a majority of shops clearly identifying GMOs.
Our objective was to determine whether repeated applications of 2-chloroethylphosphonic acid (ethephon) + gibberellic acid (GA3) to stock chrysanthemum plants that are day-neutral for flower bud initiation would increase the number of quality cuttings. Across five cultivars, there were no significant differences between controls and plants receiving 250 ppm ethephon in the total number of cuttings per plant. The percentage of cuttings with crown buds was greater for cuttings from controls than for ethephon-treated plants. Applying 500 ppm ethephon significantly reduced the number of cuttings. We conclude that chrysanthemum clones day-neutral for flower bud initiation and development with low long-day leaf number could be selected to form a 4 to 5 week production group.
In cases where invasive species are presumed to be strictly exotic, the discovery that the species is also native can be disconcerting for researchers and land managers responsible for eradicating an exotic invasive. Such is the case with reed canarygrass (Phalaris arundinacea), for which decades of misinformation led to the call for nationwide control of this species in the United States. However, native populations were first reported by LaVoie and then later confirmed by Casler with molecular analyses. This, coupled with the discovery by Anderson that this species has been used in weavings by Native Americans for centuries, also made the native forms of interest for protection. Identifying the native status of historic, herbarium specimens via molecular analyses is of great interest to determine localities of native populations for confirmation with extant specimens. Genetic-based methods describing DNA polymorphism of reed canary grass are not well developed. The goal of the presented research is to assess the utility of genomic DNA obtained from historic (herbaria) and extant (fresh) tissue of reed canarygrass and the application of using Diversity Arrays Technology sequencing low density for genetic population studies.
During the 2021 American Society for Horticultural Science annual conference, the Teaching Methods Professional Interest Group hosted the workshop “Going beyond Zoom: Tips and tricks for teaching horticulture online.” This workshop provided a forum for the dissemination of tools, materials, and approaches used to facilitate active learning in horticulture courses. Here we summarize the topics presented in the workshop as a resource for current and future horticulture instructors.
The issue of native invasive species management rarely occurs and is fraught with biological, social, and economic challenges as well as posing difficulties in decision-making for land managers. The terminology for categorization of invasive species is examined in the context of their bias(es), which complicates control. An example of a newly determined native species, which is also invasive, is used as an example to navigate control and regulatory issues. Native, invasive reed canarygrass (Phalaris arundinacea L.) occurs throughout Minnesota and most likely the entire midwest region of central United States and Canadian provinces. The species was previously assumed to be an exotic, nonnative Eurasian import but recent molecular evidence supports its status as a native but invasive species. We address how this change to being a native but highly invasive species modifies approaches to mitigate its potential control for state, Tribal, and local authorities. The implications of these new findings will require differential shifts in land managers’ perspectives and approaches for control. Particular differences may exist for Tribal Land Managers vs. departments of natural resources and private agencies. Additionally, regulatory challenges have yet to be decided on how to legislate control for a native invasive species that had been previously assumed as exotic or foreign in origin. These opportunities to change attitudes and implement judicial control measures will serve as a template for other invasive species that are native in origin.