Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Navjot Kaur x
  • Refine by Access: All x
Clear All Modify Search
Free access

Navjot Kaur and Jiwan P. Palta

We investigated the use of lysophosphatidylethanolamine (LPE) for prolonging vase life of snapdragon (Antirrhinum majus L.). Freshly cut snapdragon spikes were set into a LPE solution at 25 mg·L-1 for 24 h and then transferred to deionized water. The vase life was enhanced by LPE. The flowers on spikes treated with LPE showed symptoms of wilting or browning 4 or 6 days later than those on the spikes given deionized water in inbred or `Potomac White', respectively. All the spikes were of marketable quality for 5 to 7 days after harvest when treated with LPE, whereas in the control only about half of the flowers were of marketable quality at 2 days after harvest. LPE treatment also delayed fresh mass loss, lowered endogenous ethylene production, and reduced ion leakage. These results suggest that LPE has commercial potential in enhancing vase life of snapdragons.

Free access

Navjot Kaur and Jiwan P. Palta

Freshly cut snapdragon (Antirrhinum majus L) spikes or carnation (Dianthus caryophyllus L cv. White Sim) stems were put in LPE (10 ppm for carnation, 25 ppm for snapdragon) solution for 24 hours and then transferred to deionized water. Parallel controls were kept continuously in deionized water. Snapdragon spikes were harvested when they had one-third of the florets opened which is a standard commercial practice. The carnations used in the experiment were harvested at three different stages of flower development starting from open brush bud stage (Stage IV) to fully opened (Stage VII, petals 45(to the stem) flower. LPE treatment delayed senescence in snapdragon by four days. Furthermore, it enhanced the opening of floral buds and opened all the florets on every spike. LPE treatment also significantly delayed loss in fresh weight of spikes associated with senescence, lowered the endogenous ethylene production and reduced ion leakage from florets. LPE had a similar effect on fresh weight and ion leakage from carnations if it was applied at an early stage of flower opening. Older carnations (Stage VII) were found unresponsive to LPE. In conclusion, LPE has the potential in enhancing the vase life of snapdragons and carnations. Carnations must be harvested at the open brush bud stage for effective LPE application. Our results suggest that LPE is prolonging vase life of cut flowers by reducing ethylene production and maintaining membrane integrity.