Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Navdeep Kaur x
Clear All Modify Search

Fruit architecture and morphology-related traits are among the determinants of fruit diversity and are major contributors to yield and yield potential in chile pepper (Capsicum spp.). This study aimed to characterize 105 genotypes of a Capsicum diversity panel consisting of cultivars, breeding lines, landrace, and wild species belonging to twelve different pod (fruit) types, for 32 morphometric Tomato Analyzer (TA) descriptors. Hierarchical cluster analysis grouped the genotypes into eight clusters based on the TA descriptors. A multivariate principal component analysis yielded two principal components, PC1 and PC2, which explained 53.24% and 10.11% of the variation in fruit diversity, respectively. The basic measurements—namely, perimeter, area, width midheight, maximum width, height midwidth, maximum height, and curved height were the most discriminating descriptors with a maximum contribution to the overall fruit shape. There was a strong, positive correlation for basic measurements and fruit shape index, whereas blockiness was negatively correlated with distal angle macro. Additive genetic effects and high heritability for the fruit traits were observed. Results of this study will provide valuable information to breed high-yielding chile pepper cultivars based on fruit morphology traits.

Open Access

Sulfur (S) is the fourth most essential nutrient after nitrogen (N), phosphorus (P), and potassium (K) with a direct role in amino acid syntheses, such as methionine, cysteine, and N assimilation. Potato is a fast-growing vegetable crop with a small crop cycle; therefore, nutrient applications at the appropriate time, place, rate, and source are essential. The objective was to determine the effect of different S sources on the potato tuber yield, specific gravity, external tuber quality, and internal tuber quality. This study was conducted in 2021 and 2022, and three S sources were applied at two different rates (T1, 45 kg⋅ha−1; T2, 90 kg⋅ha−1) using a 3 × 2 factorial design. Three S sources were derived from the sulfate of ammonia (AS; SO4 2− source), magnesium sulfate (EPTOP; S0 source), and gypsum (SO4 2− source). Three potato cultivars were used for this study (Atlantic, Satina, and Red La Soda). The total and marketable yields indicated a positive response to the application of the S sources. Gypsum and EPTOP outperformed AS, and the lower rate (T1) performed better than the higher rate (T2). In one of the trials, the maximum yield difference between AS and gypsum was 33%. The maximum specific gravity for cultivar Atlantic was found with AS and gypsum, whereas Red La Soda and Satina did not respond to any S source. We did not report the treatment effects on the external and internal disorders when weather affected them.

Open Access