Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Nathanael Sullivan x
Clear All Modify Search

Physiological variability within a large canopy ‘d’Anjou’ tree results from agronomic and environmental factors. Fruit diversity within the canopy was surveyed using metabolic profiling to identify metabolism associated variability within the canopy. Different portions of the same fruit were evaluated to determine future precise sampling protocols for metabolic profiling of pear. We expected that the metabolic profile of the peel and cortex would be diverse and these differences would highlight specific metabolic pathways as influenced by these conditions. Another focus of this work was developing an untargeted metabolic profiling protocol tailored for pear using a combination of extractions coupled with GC-MS and LC-MS analysis. ‘d’Anjou’ pear fruit harvested from two different zones of trees trained to an open vase canopy were maintained at room temperature for 24 days to observe any changes in external phenotype and metabolic profile. Fruit harvested from the internal canopy were greener as also indicated by high Index of Absorbance Difference (IAD) and hue angle values. Metabolic profile differences between tree positions were widespread and included metabolites from many pathways beyond those associated with peel color. In addition, peel metabolic profile was different depending upon the tissue position (top vs. bottom) sampled from the pears. Specific pathways altered by tree position included those potentially linked to fruit quality and ripeness, including malic acid and aroma volatile (V) levels, as well as light environment, such as flavonol glycoside levels. Present results warrant further future work targeting these changes over time during storage and alongside fruit quality analyses to validate the impacts on ripening and tree factors. In addition, outcomes indicate tissue sampling strategies require consistency with respect to the region of the pear fruit sampled for metabolomics.

Free access