Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Nathanael R. Hauck x
  • All content x
Clear All Modify Search
Free access

Nathanael R. Hauck, Amy F. Iezzoni, Hisayo Yamane, and Ryutaro Tao

Correct assignment of self-incompatibility alleles (S-alleles) in sweet cherry (Prunus avium L.) is important to assure fruit set in field plantings and breeding crosses. Until recently, only six S-alleles had been assigned. With the determination that the stylar product of the S-locus is a ribonuclease (RNase) and subsequent cloning of the S-RNases, it has been possible to use isoenzyme and DNA analysis to genotype S-alleles. As a result, numerous additional S-alleles have been identified; however, since different groups used different strategies for genotype analysis and different cultivars, the nomenclature contained inconsistencies and redundancies. In this study restriction fragment-length polymorphism (RFLP) profiles are presented using HindIII, EcoRI, DraI, or XbaI restriction digests of the S-alleles present in 22 sweet cherry cultivars which were chosen based upon their unique S-allele designations and/or their importance to the United States sweet cherry breeding community. Twelve previously published alleles (S1, S2, S3, S4, S5, S6, S7, S9, S10, S11, S12, and S13) could be differentiated by their RFLP profiles for each of the four restriction enzymes. Two new putative S-alleles, both found in `NY1625', are reported, bringing the total to 14 differentiable alleles. We propose the adoption of a standard nomenclature in which the sweet cherry cultivars `Hedelfingen' and `Burlat' are S3S5 and S3S9, respectively. Fragment sizes for each S-allele/restriction enzyme combination are presented for reference in future S-allele discovery projects.

Free access

Hisayo Yamane, Ryutaro Tao, Akira Sugiura, Nathanael R. Hauck, and Amy F. Iezzoni

This report demonstrates the presence of S-ribonucleases (S-RNases), which are associated with gametophytic self-incompatibility (SI) in Prunus L., in styles of self-incompatible and self-compatible (SC) selections of tetraploid sour cherry (Prunus cerasus L.). Based on self-pollen tube growth in the styles of 13 sour cherry selections, seven selections were SC, while six selections were SI. In the SI selections, the swelling of pollen tube tips, which is typical of SI pollen tube growth in gametophytic SI, was observed. Stylar extracts of these selections were evaluated by two-dimensional polyacrylamide gel electrophoresis. Glycoproteins which had molecular weights and isoelectric points similar to those of S-RNases in other Prunus sp. were detected in all selections tested. These proteins had immunological characteristics and N-terminal amino acid sequences consistent with the S-RNases in other Prunus sp. Two cDNAs encoding glycoproteins from `Erdi Botermo' were cloned. One of them had the same nucleotide sequence as that of S4-RNase of sweet cherry (Prunus avium L.), while the amino acid sequence from the other cDNA encoded a novel S-RNase (named Sa-RNase in this study). This novel RNase contained two active sites of T2/S type RNases and five regions conserved among other Prunus S-RNases. Genomic DNA blot analysis using cDNAs encoding S-RNases of sweet cherry as probes indicated that three or four S-RNase alleles are present in the genome of each selection regardless of SI. All of the selections tested seemed to have at least one S-allele that is also found in sweet cherry. Genetic control of SI/SC in tetraploid sour cherry is discussed based on the results obtained from restriction fragment length polymorphism analysis.