Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Nathan S. Boyd x
Clear All Modify Search
Authors: and

There is a need to identify postemergence (POST) herbicides for weed control in field-grown caladium [Caladium bicolor (Aiton) Vent.]. The objective of this research was to evaluate the tolerance of two caladium cultivars Florida Cardinal and Florida Fantasy to POST applications of sulfonylurea (SU) herbicides flazasulfuron, foramsulfuron, imazosulfuron, and mesosulfuron. At 8 weeks after treatment (WAT), ‘Florida Cardinal’ and ‘Florida Fantasy’ treated with the highest rate of imazosulfuron (1680 g a.i./ha) had <10% visual injury, leaf number, height, and tuber weight reduction compared with the nontreated control. Both caladium cultivars exhibited greater susceptibility to flazasulfuron, foramsulfuron, and mesosulfuron as compared with imazosulfuron. The label-recommended rate of flazasulfuron (52 g a.i./ha), foramsulfuron (29 g a.i./ha), and mesosulfuron (15 g a.i./ha) reduced ‘Florida Cardinal’ height 35%, 27%, and 35%, respectively, and reduced ‘Florida Fantasy’ height 43%, 31%, and 21% compared with the nontreated plants, respectively. Caladium tuber weight exhibited a differential cultivar response to the evaluated SU herbicides, except imazosulfuron. The highest rate of flazasulfuron (420 g·ha−1), foramsulfuron (232 g·ha−1), and mesosulfuron (120 g·ha−1) reduced ‘Florida Cardinal’ tuber weight 50%, 65%, and 58% compared with the nontreated control, respectively, whereas these treatments reduced ‘Florida Fantasy’ tuber weight <25%. The mesosulfuron rate required for 20% tuber weight reduction (T20) in ‘Florida Cardinal’ was 2 g·ha−1, but the T20 value was 28 g·ha−1 for ‘Florida Fantasy’. We concluded that the caladium cultivars Florida Cardinal and Florida Fantasy are highly tolerant to the POST applications of imazosulfuron, whereas these caladium cultivars are more susceptible to flazasulfuron, foramsulfuron, and mesosulfuron.

Free access

Many strawberry growers in Florida relay crop vegetables with strawberries or grow multiple crops on the same plastic mulch. The practice can reduce the overall input costs per crop but weed management can be problematic. Field experiments designed as a split plot were conducted in Balm and Dover, FL over two successive strawberry-growing seasons from Oct. 2014 to Mar. 2015 (year 1) and Oct. 2015 to Mar. 2016 (year 2) and two successive muskmelon-growing seasons from March to July 2015 (year 1) and March to July 2016 (year 2). The objectives were to examine the effect of summer fallow programs and the presence or absence of a relay-crop on weed density and strawberry (Fragaria ×ananassa Duchesne) and muskmelon (Cucumis melo L.) yields. Summer fallow programs included leaving the plastic mulch in place and reusing it in year 2, a sunn hemp (Crotalaria juncea L.) cover crop, or a conventional chemical fallow. Relay cropping muskmelon with strawberries had no effect on strawberry yield. Summer fallow programs had no effect on muskmelon growth and yield in Balm and Dover, as well as strawberry growth and yield in Balm. In Dover, the plastic mulch summer fallow had 22% to 34% lower berry yield in year 2 compared with cover crop and chemical fallow, respectively. In year 2, relay-cropping was more effective in reducing total weed density compared with strawberry monoculture in Dover but not in Balm. In year 2 in Dover, averaged overall summer fallow programs, the total weed density was ≈3-fold less in relay-cropping than strawberry monoculture. Of all the summer fallow programs evaluated, leaving the plastic mulch in place combined with glyphosate was the most effective summer fallow program, whereas the conventional chemical fallow was the least effective at weed suppression. We conclude that relay cropping or double use of plastic mulch for successive strawberry crops are viable options for Florida strawberry growers.

Free access

Experiments were established to evaluate the suitability of growing degree-day (GDD, T base = 0 °C) models for predicting emergence, tip dieback, and flowering of lowbush blueberry ramets in Nova Scotia, Canada. Data for model development were collected from quadrats established in several non-bearing and bearing blueberry fields throughout the dominant blueberry production areas in northern and central Nova Scotia. Blueberry ramets emerged between 222 and 265 GDD (6 May to 14 May) and reached 90% emergence between 619 and 917 GDD (7 June to 5 July). Emergence continued to slowly increase until late summer or early fall. Tip dieback began between 598 and 792 GDD (14 June to 21 June) and duration of this phase depended on whether late-emerging ramets developed to tip dieback. A four-parameter Weibull and a three-parameter Gompertz equation adequately explained cumulative blueberry ramet emergence and cumulative ramets at tip dieback as functions of GDD in the non-bearing year, respectively. The four-parameter Weibull function also explained the relationship between cumulative flowering ramets and GDD in the bearing year. Flowering ramets were first observed between 376 and 409 GDD (19 May to 30 May) in the bearing year. Model predictions for initiation of emergence, tip dieback, and flowering were 243, 692, and 389 GDD, respectively. Models were validated with independent data sets collected throughout northern and central Nova Scotia. The relationship between the percentage of open flowers on individual ramets and GDD in the bearing year was well described by a Gaussian model at two sites with a predicted peak number of open flowers between 552 and 565 GDD.

Free access

Sulfentrazone was recently registered for use in tomato and strawberry in Florida. Field experiments were conducted at the Gulf Coast Research and Education Center in Wimauma, FL, to evaluate PRE sulfentrazone applications when applied on flat soil 30 days before bed formation (PRE-f), on the bed top immediately before laying plastic mulch (PRE-t), applied PRE-t as a tank mix with other PRE herbicides, or PRE-t followed by POST halosulfuron or rimusulfuron (POST). Sulfentrazone did not damage the tomato and strawberry crop and had no effect on strawberry and tomato fruit yield. It was as effective as the industry standards but none of the evaluated herbicide treatments provided adequate weed control. POST halosulfuron in tomato resulted in significantly greater nutsedge control at 11 (14%) and 13 (27%) weeks after initial treatment (WAIT) compared with other treatments in Fall 2019 and Spring 2020, respectively. However, in tomato, tank-mixing sulfentrazone with S-metolachlor or metribuzin did not enhance nutsedge control. Weed control did not improve with increased rates or with the use of PRE-f followed by (fb) PRE-t applications in tomato. PRE-t sulfentrazone fb POST halosulfuron was an efficient nutsedge management option in tomato. Sulfentrazone alone did not effectively control weeds in tomato or strawberry. Increased rates of sulfentrazone with the use of PRE-f fb PRE-t sulfentrazone applications did reduce (34%) total weed density in strawberry.

Open Access

In Florida, cabbage (Brassica oleracea L.) is typically grown without a plastic mulch and as a result, weeds are a significant problem in most fields. Experiments were conducted from Nov. 2015 to Apr. 2016 in Balm, Citra, and Parrish, FL, to evaluate weed control and ‘Bravo’ cabbage tolerance to multiple herbicide programs applied pretransplanting (PRE-T), posttransplanting (POST-T), PRE-T followed by (fb) a sequential application at 3 weeks after transplanting (WATP), and POST-T fb sequential application at 3 WATP. PRE-T herbicide treatments of 277 g a.i./ha clomazone, 280 g a.i./ha oxyfluorfen, and 798 g a.i./ha pendimethalin and POST-T herbicide treatments of 6715 g a.i./ha dimethyl tetrachloroterephthalate (DCPA) were ineffective, and weed control never exceeded 70% in Balm and provided <50% weed control in Citra and Parrish at 6 and 8 WATP, respectively. POST-T applications of napropamide + S-metolachlor at 2242 + 1770 g a.i./ha, DCPA + S-metolachlor at 6715 + 1170 g a.i./ha, and S-metolachlor POST-T fb clopyralid at 1170 g a.i./ha fb 210 g ae/ha were the most effective herbicide treatments and consistently provided >70% weed control. In addition, results showed that all of the herbicide treatments evaluated except the PRE application of clomazone at 277 g a.i./ha are safe for cabbage with no adverse effect on yield.

Free access

Florida vegetable growers are facing high production costs due to high input costs, lower profitability, and competition from foreign markets. Multi/intercropping allows growers to increase the yields and profits per unit area by producing multiple crops on the same beds. Experiments determining the effects of intercropping and plant spacing was conducted in Fall 2018 and 2019 at Gulf Coast Research and Education Center, Balm. Tomato and bell pepper were intercropped at low and high planting density on plastic-covered beds. Bell pepper shoot biomass was significantly (P < 0.001) reduced when intercropped with tomato, compared with monocropped bell pepper. However, tomato shoot biomass was significantly reduced when tomato plant density increased, but it was unaffected by bell pepper intercropping. Biomass of both crops was unaffected by relay cropping. Bell pepper yields when intercropped with tomato at low density (60 cm tomato-tomato and 38 cm pepper-pepper) had similar yields to bell pepper planted alone in low and high planting density. We concluded that bell pepper plants were more sensitive to interspecific competition, whereas tomato plants were more sensitive to intraspecific competition. Intercropping may be a viable option for growers at recommended plant densities used for monocrops. However, high plant density is not recommended.

Open Access

Vegetable growers in Florida face rising production costs, reduced crop value, and competition from foreign markets. Relay cropping is a variant of double cropping, where the second crop is planted into the first crop before the harvest is finished. This cropping system may be a potential solution to lower production costs per crop by sharing some inputs for two crops. The objectives of this study were to determine the effect of cropping sequence and transplanting date of the secondary crop when relay cropping tomato and bell pepper. Two field experiments were conducted at the Gulf Coast Research and Education Center in Balm, FL, in 2018 and 2019. In the first experiment, tomato was grown as the primary crop and bell pepper was added as the secondary crop, with multiple transplanting dates (8 Aug., 23 Aug., 7 Sept., and 24 Sept.). The second experiment had the same setup but the reverse cropping sequence. Bell pepper yield as the secondary crop was reduced by 65% when grown with tomato as the primary crop compared with bell pepper planted alone. Transplanting date had no effect on bell pepper yield (P = 0.091). Tomato yield was unaffected by the presence of the secondary crop. In the second experiment, tomato yield as a secondary crop was 36% lower when grown with bell pepper as the primary crop compared with tomato crop alone (monocropped). However, tomato yield was significantly reduced by the presence of bell pepper only when tomato crop was planted within 30 to 45 days after planting bell pepper. Based on these results, we recommend relay cropping tomato as the secondary crop within 30 days of planting of bell pepper as the primary crop. However, we do not recommend relay cropping bell pepper as the secondary crop with tomato.

Open Access

Strawberry growers face rising production costs combined with competition from foreign imports. Relay cropping vegetables with strawberries is a unique approach that can diversify income and reduce the risk associated with strawberry production. Planting vegetable transplants on the same bed before strawberry crop termination enables continued berry harvesting while the new vegetable transplants become established. Relay cropping techniques of strawberry with eggplants were evaluated during the 2016–17 and 2017–18 seasons in Balm, FL. The strawberry crop was planted in September, and eggplant was transplanted into the beds either as a sole crop or with strawberry plants. Two experiments were conducted to optimize the planting date of strawberries and the termination date of strawberries. The objective of the research was to examine the competitive relationship between strawberry and eggplant crops and to define the optimal planting date for the eggplant and termination date of strawberries to minimize the competitive interaction and maximize the yield of both crops. Strawberry yields were unaffected (P = 0.938) by relay cropping or by the planting date of the eggplant. Eggplants grown without strawberries had 27% to 32% higher yields (P = 0.004) compared with relay-cropped eggplants, and eggplant yield decreased with later planting dates (P < 0.001). A partial budget analysis showed that transplant dates of 4 and 18 Jan. for eggplants with strawberries resulted in increased profits of $7320 and $3461 per ha, respectively, over the baseline treatment of strawberries alone, but later planting dates resulted in an overall economic loss ($7800–$16,000/ha). Strawberry termination dates did not affect eggplant yields. In conclusion, relay cropping eggplants with strawberries resulted in no effect on strawberry yields, reduced eggplant yields, but increased overall profits when eggplant were transplanted in early to mid-January. Relay cropping of strawberries with eggplants in early February to early March is less profitable than a monocrop of strawberries.

Open Access