Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Na Zhang x
Clear All Modify Search
Authors: , , , and

Ethephon [ETH (2-chloroethylphosphonic acid, an ethylene-releasing compound)] has been used as a plant growth regulator in turfgrass management. The aim of the study was to assess the effects of ETH seed treatment on drought tolerance of kentucky bluegrass (Poa pratensis) seedlings. Seeds of two kentucky bluegrass cultivars, Midnight and Nuglade, were exposed to ETH treatment or untreated as controls. Seedlings were then exposed to two water regimes: well-watered conditions and polyethylene glycol (PEG)–induced drought conditions. ETH-treated plants exhibited better turf performance relative to the untreated control under PEG-stressed conditions illustrated by higher relative water content (RWC) and lower lipid peroxidation and lower electrolyte leakage (EL). In both cultivars, ETH treatment increased enzyme activity of ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT); proline content; and soluble protein content under PEG-induced drought conditions. The results suggest that ETH seed treatment can improve drought tolerance in kentucky bluegrass seedlings.

Full access

More axillary buds 1 (MAX1), initially identified in arabidopsis (Arabidopsis thaliana), is a key regulatory gene in strigolactone synthesis. CmMAX1, an ortholog of MAX1 was cloned from chrysanthemum (Chrysanthemum morifolium cv. Jinba). It had an open reading frame of 1611 bp and encoded 536 amino acid of P450 protein, with a conserved heme-binding motif of PFG × GPR × C × G, as well as PERF and KExxR motifs. The predicted amino acid sequence of CmMAX1 was most closely related to the MAX1 ortholog identified in lotus (Nelumbo nucifera), NnMAX1, with 55.33% amino acid sequence similarity. Expression analysis revealed there was no significant difference of CmMAX1 expression among various tissues. Phosphorus (P) deficiency significantly improved the expression levels of CmMAX1. Strigolactone, auxin, and cytokinin negatively regulated the expression of CmMAX1. Overexpression of CmMAX1 reduced the branch numbers of arabidopsis max1-1. These results suggest that CmMAX1 may be a candidate gene for reducing the shoot branching of chrysanthemum.

Free access

The addition of pulverized grape pruning wood to grape soils has a positive effect on fruit quality. However, its effects on the soil microecology of the root zone and the growth of the grape plants are not fully understood. To address this, ‘Shine Muscat’ grapes were cultivated in media consisting of garden soil and crushed grape pruning material at different mass ratios [100:1 (T1), 50:1 (T2), 30:1 (T3), 20:1 (T4), and 10:1 (T5)] and in garden soil without the pruning material, as a control. The changes in the plant fresh weight, leaf area, soil and plant analyzer development (SPAD) value, root development, soil organic carbon, microbial biomass carbon, and soil enzyme activity were determined over time. High-throughput sequencing technology was used to determine the soil bacterial community structures. The pruning supplementation increased the grape plants fresh weight, leaf area, and SPAD values. The T2 and T3 treatments increased the grape root length, surface area, and the projected area and number of the root tips; the soil organic carbon content, microbial biomass carbon content, soil invertase activity, amylase activity, and β-glucosidase activity were also significantly increased. The addition of the grape pruning material was found to increase the bacterial diversity and richness 60 and 150 days after treatment. At the phylum level, Proteobacteria, Acidobacteria, and Actinobacteria were the dominant groups, and the grape pruning material increased the relative abundance of the Acidobacteria and Actinobacteria after 60 and 150 days. The relative abundance of the Actinobacteria in the T2 treatment was 1.7, 1.3, 1.5, and 1.3 times that of the control, after 60, 90, 120, and 150 days, respectively. The T2 treatment was identified as the optimal treatment for grapes in the field because it improved the soil microecology and promoted root and tree development the most compared with the other treatments tested.

Open Access

The marginal soil temperature on the south side of a greenhouse remains at low temperatures in winter for long periods, which affects crop growth and land-use efficiency, it is of great significance to grasp the influencing factors of soil temperature change to improve the marginal soil temperature on the south side of the greenhouse. This study was conducted in at typical greenhouse in the cold and arid area of northern China and used the Grey Relational Analysis (GRA) method, the relational degree between the marginal soil temperature on the south side of the greenhouse and environmental factors under different lining structures was analyzed, and established the soil temperature transfer function. The results show that soil temperature had the greatest correlation with the soil humidity and air humidity inside and outside the greenhouse, and the second greatest correlation was the relation with the air temperature inside and outside the greenhouse and the outdoor soil temperature; the lining structure could effectively reduce the relation between soil temperature and humidity inside and outside the greenhouse. Polystyrene extruded board (PEB) had a greater degree of relational reduction than other lining materials in the test. Through verification analysis, the mean absolute error of soil temperature of 5 cm was less than 0.85 °C, the average absolute error of soil temperature at 15 cm was less than 0.57 °C, and the average absolute error of soil temperature at 25 and 55 cm was less than 0.2 °C. In conclusion, the constructed soil temperature transfer function could be used to predict the variation trend of soil temperature, and the PEB material lining structure had good thermal insulation.

Open Access

A greenhouse field experiment involving tomato (Solanum lycopersicum) was performed using different nitrogen (N) management regimes: sole application of differing rates of chemical N fertilizer (SC) (SC treatments: N0, N1, N2, and N3) and combined application of manure and chemical N fertilizer (MC) (MC treatments: MN0, MN1, MN2, and MN3). These were used to understand the relationship between comprehensive fruit composition, yield, and N fractions (soil mineral N; soil soluble organic N; soil microbial biomass N, and soil fixed ammonium) under greenhouse conditions. The results showed that the MC treatments significantly increased vitamin C and soluble sugar content compared with SC treatments. In addition, the MN2 treatment produced a high yield and had a positive effect on fruit composition. The N3 (563 kg N/ha) and MN3 (796 kg N/ha) treatments resulted in a high loss of N below the root zone (0–30 cm), consequently reducing N use efficiency. Soil mineral N, soil soluble organic N, and soil fixed ammonium tended to be higher during the first fruiting period, whereas soil microbial biomass N tended to be higher during the second fruiting period. MC treatments significantly increased the N fraction in the 0- to 30-cm soil layer; N fractions tended to be higher with the MN2 treatment. According to an optimum regression equation, soil fixed ammonium during the first fruiting period and soil microbial biomass N during the second fruiting period had a more significant influence on tomato yield and fruit composition. Overall, application MC at an appropriate rate (MN2: 608 kg N/ha) is a promising approach to achieving high yields and optimum taste, and it offers a more sustainable fertilizer management strategy compared with chemical N fertilization.

Free access

Vegetable soybean is an important economic and nutritious crop. In this study, 48 differentially expressed proteins were identified from filling seeds of soybean (Glycine max) cv. Mindou 6 by using two-dimensional electrophoresis (2-DE) combined with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Among them, 25% were related to protein destination and storage, 42% to energy and metabolism, 15% to disease/defense, 6% to transporters, 4% to secondary metabolism, 4% to transcription, 2% to protein synthesis, and 2% to cell growth/division. Along with the maturity of seeds, the number of unchanged abundance proteins decreased, while that of both upregulated and downregulated proteins increased. Both downregulated expression of caffeic acid O-methyltransferase (COMT) and upregulated expression of sucrose-binding protein (SBP) 2 precursor may contribute to increase in digestibility, nutritional value, and eating quality of vegetative seeds at suitable picking period. The pattern of unchanged proteins during the whole seed-filling stage may be also beneficial to the quality of vegetable soybean.

Free access

Ten polymorphic microsatellite loci were isolated and characterized from an enriched genomic library of Paphiopedilum concolor (Batem.) Pfitzer. The number of alleles per microsatellite locus ranged from three to 11 with an average of 6.4 in a sample of 30 individuals from three populations. The observed and expected heterozygosity ranged from 0.200 to 0.800 and from 0.544 to 0.827, respectively. These microsatellites can be used as tools to investigate the genetic structure of P. concolor populations and relationship patterns with closely related taxa.

Free access