Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: N.J. Gooch x
Clear All Modify Search
Full access

N.J. Gooch, Pascal Nzokou and Bert M. Cregg

Containerized conifers are increasingly marketed and used as live Christmas trees worldwide. However, prolonged exposure to indoor conditions may reduce cold hardiness. We examined physiological and morphological changes of three species black hills spruce (Picea glauca), balsam fir (Abies balsamea), and douglas fir (Pseudotsuga menziesii var. glauca) subjected to in-home conditions for 10 and 20 days. Shoot cuttings were subjected to artificial freeze testing (AFT) and the physiological and morphological changes were evaluated by chlorophyll fluorescence, bud mortality, and needle damage. After 7 days indoors, bud temperature at 50% lethality (LT50) was −24.5 °C for douglas fir, −23.5 °C for black hills spruce, and −22.5 °C for balsam fir. After 20 days indoors, bud LT50 increased to −18 °C for black hills spruce and balsam fir, and −21 °C for douglas fir. The effect of the indoors exposure on needle damage was very limited for black hills spruce and balsam fir; however, severe needle damage was apparent on douglas fir even at just 3 days of indoor exposure (LT50 = −21 °C). This negative impact worsened with indoor exposure time with LT50 for after 20 days of indoor exposure at −7 °C. Chlorophyll fluorescence values followed a similar trend with needle damage with black hills spruce and balsam fir showing no difference, while douglas fir values were significantly affected. These results confirm the hypothesis that live trees kept indoors for extended periods progressively deharden and become very sensitive to cold damage when moved outdoors following the indoor exposure. However, whole plant survival after transplantation in the field did not corroborate results obtained from the AFT. Further studies are needed to investigate the potential causes of the high transplantation mortality following the display treatments.