Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Muhammet Tonguç x
Powdery mildew is a fungal disease of crucifers, caused by Erysiphe polygoni D.C. and it can be problematic during seed increase in green-houses. Crosses were made between Brassica carinata (Ethiopian mustard) accession (PI 360883) and B. oleracea cultivars `Titleist' and `Cecile' to transfer resistance to powdery mildew to B. oleracea germplasm. It was not possible to obtain interspecific hybrids between Ethiopian mustard and B. oleracea through natural seed set. However, interspecific hybrids and backcross one (BC1) progenies were produced via embryo rescue following sexual crosses. Four interspecific hybrid plants were produced with the aid of embryo rescue from cultured pistils with B. carinata as the maternal parent, and their interspecific origin was confirmed through plant morphology and analysis of RAPD polymorphisms. No interspecific hybrids were obtained when `Titleist' was used as a maternal parent. Interspecific hybrid plants were male sterile and they were used as maternal parents to produce BC1 plants. Twenty one BC1 plants were obtained through natural seed set and embryo rescue, although embryo rescue was not necessary to produce first backcross generation plants. When tested in greenhouse with powdery mildew, all interspecific hybrids and eight of the BC1 plants were resistant to the disease. Crosses are being made to produce BC2 plants with 2n = 18 chromosomes for introgression of the resistance in B. oleracea.
Black rot, caused by Xanthomonas campestris pv. campestris (Pam.) Dawson (Xcc), is a major bacterial disease of Brassica oleracea L. vegetables. In this study the related species Brassica carinata Braun (ethiopian mustard), which can be used to generate interspecific crosses with B. oleracea was evaluated for resistance to Xcc. Fifty-four accessions and susceptible control plants were wound inoculated with four isolates of Xcc race 4 at the juvenile stage. Of the 54 accessions tested, A 19182 and A 19183 exhibited no symptoms when inoculated with Xcc for all plants tested, and the accessions including PI 199947, PI 199949 and PI 194256 segregated for resistance to Xcc.
Chloroplast DNA (cpDNA) was used to identify polymorphisms between crucifer species using the polymerase chain reaction-random fragment-length polymorphism (PCR-RFLP) technique. Ten primer pairs based on cpDNA gene sequences were used to amplify cpDNA fragments in Brassica oleracea L., B. rapa L., B. nigra (L.) Koch, B. napus L., B. carinata Braun, B. juncea (L.) Czern, and Raphanus sativus L. accessions. Amplified DNA sequences were then digested using 11 restriction enzymes to identify polymorphisms between the 7 species. Of the 110 combinations, 38 generated polymorphisms that discriminated one or more of the species. Genotyping of these polymorphisms in 10 accessions of each of the diploid species (B. oleracea, B. nigra, B. rapa and R. sativus) did not reveal segregating polymorphisms among accessions within species, indicating that they can be used to help determine species identity. Ten accessions of each of the amphidiploids B. napus, B. carinata and B. juncea were genotyped to infer their maternal ancestry. The diploid source of cpDNA in B. carinata was B. nigra in all accessions tested and B. rapa for nine of ten B. juncea accessions tested. Two B. napus accessions amplified polymorphisms shared with B. rapa, and eight accessions produced unique polymorphisms from neither B. rapa, B. oleracea or B. nigra. The polymorphisms identified in this study can be used to help confirm identity of the diploid crucifer species for taxonomic and conservation studies.