Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Mudau N. Fhatuwani x
  • HortTechnology x
Clear All Modify Search

The objective of this investigation was to determine the effects of simultaneous applications of nitrogen (N), phosphorus (P), and potassium (K) nutrition on growth and chemical analysis of bush tea (Athrixia phylicoides). Four consecutive trials were conducted at Morgenzon (Louis Trichardt, Limpopo Province, South Africa), a commercial nursery, one at each season (autumn, winter, spring, and summer) under 50% shade. Treatments comprised three levels of N (300, 350, 400 kg·ha−1), three levels of P (250, 300, 350 kg·ha−1), and three levels K (150, 200, 250 kg·ha−1). The experimental design was a 3 × 3 × 3 factorial experiment arranged in a randomized complete-block design with four replications. Parameters recorded were plant height, number of branches and leaves, fresh and dry stem weight, fresh and dry root weight, stem girth, fresh and dry shoot weight, leaf area, and percent concentration of leaf and root tissue N, P, K, and total polyphenol concentrations as influenced by season in a shaded nursery environment. Treatment combinations of N and P at rates of 300 kg·ha−1 and K at 200 kg·ha−1 increased fresh and dry shoot weight, number of leaves, leaf area, and concentration of total polyphenols. Other treatments did not consistently affect concentrations of leaf N, P, or K during the study period, although the treatment that received combinations of N and P at rates of 300 kg·ha−1 and K at 200 kg·ha−1 always had the highest concentrations of leaf N, P, and K and lowest root N, P, and K concentrations. No differences in plant height, number of branches, number of flower buds (autumn and winter), stem girth, fresh and dry root weight, and fresh and dry stem weight due to treatment combinations were observed.

Full access

Spinach (Spinacia oleracea) is a member of the Amaranthaceae family. Baby spinach leaves have a very high respiration rate, thus postharvest quality is affected mostly by tissue decay and the development of off-odors. Thus, this study was conducted to investigate the influence of storage temperature and time on the postharvest quality of baby spinach. Baby spinach leaves were harvested 36 days after planting and subsequently stored at 4 and 22 °C for 0, 2, 4, 6, 8, 10, or 12 days. Thereafter, the leaves were incubated for 72 hours at 40 °C to dry. Minerals, trace elements, total phenols, total carotenoids, flavonoids, and antioxidant activities were measured. Concentration of magnesium (Mg), zinc (Zn), and iron (Fe) were declined after 8 days of storage at 4 °C, while at 22 °C they declined after 2 days of storage. Mg, Zn, and Fe revealed a similar trend with significantly higher carotenoids found up to 6 days in storage at 4 °C, while at 22 °C the carotenoid levels declined after only 2 days. Total phenolic compounds gradually decreased in samples stored at 4 °C. However, samples stored at 22 °C showed a rapid decrease after 4 days. Both total antioxidant activities and vitamin C content showed a similar trend, with the content remaining constant at 4 °C and decreasing after 6 days, whereas the total antioxidant activities and vitamin C for leaves stored at 22 °C decreased immediately after 2 days. Results demonstrated that quality of baby spinach deteriorates as storage time and temperature increase.

Free access