Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Morris G. Huck x
Clear All Modify Search

Field and greenhouse experiments were conducted to determine the response of eastern black nightshade (Solanum ptycanthum), black nightshade (S. nigrum), and tomato (Lycopersicon esculentum Mill. cv. Heinz 6004) to water stress and the effect of nightshade-tomato competition on soil water content. In the greenhouse, plants were exposed to three water regimes induced by watering either daily, weekly, or biweekly. Water deficit caused a similar decrease in height, weight, and leaf area in all three species. There was more than a 50% reduction in height when the plants were watered biweekly compared with daily watering. Water stress caused a shift in biomass from shoots to roots in all three species. Black nightshade and tomato produced thinner leaves in response to water deficit. Companion field experiments were conducted during the 1989 and 1990 growing seasons in Urbana, Ill. Eastern black nightshade and black nightshade were transplanted at densities of 0.8, 1.6, 3.2, and 4.8 plants/m2, 5 days after tomatoes were transplanted. These nightshade densities caused significant reductions in soil water content. In 1989, only the highest density of either nightshade species reduced topsoil water content. In 1990, all densities of nightshade, except the two lowest densities of black nightshade, reduced topsoil water content. Eastern black nightshade consistently had a greater effect on tomato yield than black nightshade. Tomato yields averaged over both years were 17,000 and 8,000 kg·ha-1 at the highest (4.8 plants/m*) density of black and eastern black nightshade, respectively. The decrease in soil moisture from high densities of nightshade could not account for the reduced yields.

Free access

Eastern black nightshade (Solanum ptycanthum) and black (Solanum nigrum) nightshade are difficult to control in tomato, interfering with harvest and decreasing fruit quality and yield. In irrigated tomatoes, soil water depletion was greater as nightshade density increased. However, tomato yield loss due to black nightshade was greatest at the lower weed densities. As density increases, photosynthetic activity (photosynthetic rates, stomatal conductance, intercellular CO2 concentration, and stomatal resistance) of black nightshade is more affected than eastern black nightshade. Photosynthetic activity of tomato is the least affected. In greenhouse experiments where water was denied for approximately a week prior to measurement, tomatoes were more sensitive to water stress than were nightshades. Nightshades were more adapted to drought stress than were tomatoes.

Free access