Search Results
In spring 1999, a commercial NAA (1-naphthaleneacetic acid) preparation for trunk sprout inhibition was compared with a corrugated plastic trunk wrap, aluminum foil wrap, bimonthly hand removal of sprouts, use of NAA preparation plus bimonthly hand removal when sprouts appeared, and a nontreated control. Three recently planted groves on three different rootstocks [`Midsweet' orange (Citrus sinensis)] on Swingle citrumelo (Citrus paradisi × Poncirus trifoliata), `Valencia' orange on Volkamer lemon (Volk, Citrus limon), and `Minneola' tangelo (Citrus paradisi × C. reticulata) on Smooth Flat Seville (SFS, Citrus hybrid) received each of the treatments in a randomized complete block experimental design with trees blocked by initial height and circumference. Every 2 months, sprouts were counted on each tree and removed from the hand removal treatments. After 1 year, all sprouts were removed and counted and height and circumference of trees was determined. Across all experiments, 82% to 100% of nontreated trees produced trunk sprouts and all sprout control methods significantly reduced sprouts per tree. NAA treatments were never significantly less effective at sprout suppression than the wraps at the P = 0.05 level, although in two experiments, wraps were more effective than NAA at P = 0.10. Time of sprout appearance varied between the three experimental blocks. Plastic and foil trunk wraps enhanced development of trunk circumference compared with nontreated controls in `Midsweet'/Swingle and `Valencia'/Volk. Greater trunk circumference resulted from use of wraps versus NAA in all three experiments, which appeared unrelated to differential sprout suppression. In these experiments, it appears that either wraps enhanced tree development beyond the suppression of sprouts or NAA influence on tree metabolism somewhat reduced trunk growth. The economics of the sprout suppression methods are also discussed.
Six trials were conducted to determine whether lower spray volumes or inclusion of different surfactants would permit adequate thinning of mandarin hybrids (Citrus reticulata hybrids) at a much lower cost per hectare. Sprays were applied using a commercial airblast orchard sprayer during physiological drop when fruitlets averaged 8 to 16 mm in diameter. Surfactant was always included at 0.05% v/v. NAA always reduced fruit per tree, increased fruit size, and decreased production of smallest size fruit. However, in only three experiments, contrast of all NAA treatments vs. controls indicated increased production of the largest (80–100 fruit per carton) and most valuable fruit. In four of five experiments, comparison of spray volumes of 600 (only examined in three of four experiments), 1200, or 2300 L·ha–1 demonstrated significant fruit size enhancement from all NAA applications. Most individual NAA treatments resulted in fewer fruit per tree, but there were no statistically significant differences between NAA treatments at different spray volumes. In only one of the four experiments, there was a marked linear relationship between spray volume and fruit per tree, yield, mean fruit size, and production of largest fruit sizes. The effects of surfactants (Activator, a nonionic, Silwet L-77, and LI-700) on NAA thinning were tested in both `Murcott' and `Sunburst'. In comparisons between Silwet L-77 and Activator surfactant, one experiment with `Murcott' showed greater fruit per tree and yield reduction from using Silwet, but with a smaller increase in production of largest fruit sizes, whereas in another `Murcott' experiment, Silwet L-77 reduced numbers of smaller fruit size with no increase in production of larger fruit. Based on these findings, current recommendations for NAA thinning of Fla. mandarins are use of spray volume of ≈1100–1400 L·ha–1 on mature trees with proportionally lower volume on smaller trees. These data appear to support use of a nonionic surfactant rather than other tested surfactants in NAA thinning of Florida mandarins. Because experience with NAA thinning of Florida citrus is limited, it is only recommended where the disadvantages of overcropping are perceived to substantially outweigh the potential losses from overthinning.