Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Monica A. Madore x
Clear All Modify Search
Free access

Clyde Wilson, Robert A. Clark and Monica A. Madore

We examined the effect of salt stress on sugar transport across the plasma membrane of source leaf tissue. We initiated the present study by investigating the effect of salt stress on the sugar transport into mature leaf tissue by measuring sucrose influx into leaf discs. In order to determine if there is a common response to salt stress, we selected two species which have been described as moderately salt-sensitive, faba bean and tomato. We found these two plants exhibit different responses to salinity with regard to sugar transport across the plasmalemma. Whereas salinity decreased sucrose uptake into leaf discs of tomato, it had little effect on faba bean. Also, the inhibitory effect of salinity in tomato was not just limited to freshly cut discs but was observed in aged discs as well. We isolated the plasma membrane from tomato and faba bean using the aqueous two-phase technique and found that although plasma-membrane vesicles obtained from faba bean were able to maintain an acetate gradient, vesicles from tomato were not, thereby eliminating any comparative study on pH-dependent sugar uptake. Studies on passive uptake into these vesicles indicate that the passive uptake in tomato may be different than faba bean.

Free access

Xuan Liu, James Sievert, Mary Lu Arpaia and Monica A. Madore

Avocado (Persea americana Mill.) tissues contain high levels of the seven-carbon (C7) ketosugar mannoheptulose and its polyol form, perseitol. Radiolabeling of intact leaves of `Hass' avocado on `Duke 7' rootstock indicated that both perseitol and mannoheptulose are not only primary products of photosynthetic CO2 fixation but are also exported in the phloem. In cell-free extracts from mature source leaves, formation of the C7 backbone occurred by condensation of a three-carbon metabolite (dihydroxyacetone-P) with a four-carbon metabolite (erythrose-4-P) to form sedoheptulose-1,7-bis-P, followed by isomerization to a phosphorylated d-mannoheptulose derivative. A transketolase reaction was also observed which converted five-carbon metabolites (ribose-5-P and xylulose-5-P) to form the C7 metabolite, sedoheptulose-7-P, but this compound was not metabolized further to mannoheptulose. This suggests that C7 sugars are formed from the Calvin Cycle, not oxidative pentose phosphate pathway, reactions in avocado leaves. In avocado fruit, C7 sugars were present in substantial quantities and the normal ripening processes (fruit softening, ethylene production, and climacteric respiration rise), which occurs several days after the fruit is picked, did not occur until levels of C7 sugars dropped below an apparent threshold concentration of ≈20 mg·g-1 fresh weight. The effect of picking could be mimicked by girdling the fruit stalks, which resulted in ripening on the tree. Again, ripening followed a decline in C7 sugars to below an apparent threshold level. Taken together, these data indicate that the C7 sugars play important roles in carbon allocation processes in the avocado tree, including a possible novel role as phloem-mobile ripening inhibitors.

Free access

Xuan Liu, Paul W. Robinson, Monica A. Madore, Guy W. Witney and Mary Lu Arpaia

Seasonal fluctuations in nonstructural carbohydrates (starch and soluble sugars) were studied in `Hass' avocado (Persea americana Mill.) trees on `Duke 7' rootstock over a 2-year period in southern California. On a dry weight basis, total soluble sugar (TSS) concentrations ranged from 33.0 to 236.0 mg·g-1 dry weight and were high compared to starch concentration (2.0 to 109.0 mg·g-1 dry weight) in all measured organs (stems, leaves, trunks and roots). The seven carbon (C7) sugars, D-mannoheptulose and perseitol, were the dominant soluble sugars detected. The highest starch and TSS concentrations were found in stem tissues, and in stems, a distinct seasonal fluctuation in starch and TSS concentrations was observed. This coincided with vegetative growth flushes over both sampling years. Stem TSS and starch concentrations increased beginning in autumn, with cessation of shoot growth, until midwinter, possibly due to storage of photosynthate produced during the winter photosynthetic period. TSS peaked in midwinter, while starch increased throughout the winter to a maximum level in early spring. A second peak in stem TSS was observed in midsummer following flowering and spring shoot growth. At this time, stem starch concentration also decreased to the lowest level of the year. This complementary cycling between stem TSS and starch suggests that a conversion of starch to sugars occurs to support vegetative growth and flowering, while sugars produced photosynthetically may be allocated directly to support flowering and fruit production.

Free access

Xuan Liu, Paul W. Robinson, Monica A. Madore, Guy W. Witney and Mary Lu Arpaia

Changes in soluble sugar and starch reserves in avocado (Persea americana Mill. on `Duke 7' rootstock) fruit were followed during growth and development and during low temperature storage and ripening. During the period of rapid fruit size expansion, soluble sugars accounted for most of the increase in fruit tissue biomass (peel: 17% to 22%, flesh: 40% to 44%, seed: 32% to 41% of the dry weight). More than half of the fruit total soluble sugars (TSS) was comprised of the seven carbon (C7) heptose sugar, D-mannoheptulose, and its polyol form, perseitol, with the balance being accounted for by the more common hexose sugars, glucose and fructose. Sugar content in the flesh tissues declined sharply as oil accumulation commenced. TSS declines in the seed were accompanied by a large accumulation of starch (≈30% of the dry weight). During postharvest storage at 1 or 5 °C, TSS in peel and flesh tissues declined slowly over the storage period. Substantial decreases in TSS, and especially in the C7 sugars, was observed in peel and flesh tissues during fruit ripening. These results suggest that the C7 sugars play an important role, not only in metabolic processes associated with fruit development, but also in respiratory processes associated with postharvest physiology and fruit ripening.