Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Mohammad Pessarakli x
Clear All Modify Search

Relative salinity tolerance of 32 perennial (Lolium perenne L.) and three intermediate (Lolium ×hybridum Hausskn.) ryegrass turf cultivars was determined by measuring turf leaf clipping dry weight, root weight, rooting depth, and percent green leaf canopy area relative to control (non-salinized) plants. After gradual acclimation, grasses were exposed to moderate salinity stress (6 dS·m−1) for 6 weeks through solution culture in a controlled environment greenhouse. Shoot parameters were highly correlated, being mutually effective predictors of salinity tolerance. After 6 weeks of salinity stress, percent green leaf canopy area (GL) was correlated with relative (to control) final week leaf clipping weight (LWREL) (r = 0.90) and with linear slope of decline of weekly leaf clipping weight over the 6-week exposure to salinity (LWSLOPE) (r = 0.66). Rooting parameters root dry weight (RW) and rooting depth (RD), although significantly correlated with all shoot parameters, were only moderately effective in predicting relative salinity tolerance. ‘Paragon’ was the most salt-tolerant as indicated by all parameters. Other salt-tolerant cultivars included Divine and Williamsburg. Intermediate ryegrass cultivars (Froghair, Midway, and Transist) were invariably found within the most salt-sensitive category for all parameters.

Free access

Relative salinity tolerance of 21 desert saltgrass accessions (Distichlis spicata [L.] Greene var. stricta (Torr.) Beetle), and one hybrid bermudagrass `Midiron' (Cynodon dactylon [L.] Pers. var. dactylon × C. transvaalensis Burtt-Davy `Midiron') were determined via solution culture in a controlled-environment greenhouse. Salinity in treatment tanks was gradually raised, and grasses progressively exposed to 0.2, 0.4, 0.6, 0.8, and 1.0 m total salinity in sequence. Grasses were held at each salinity level for 1 week, followed by determination of relative salinity injury. Relative (to control) live green shoot weight (SW), relative root weight (RW), and % canopy green leaf area (GLA) were highly correlated with one-another (all r values >0.7), being mutually effective indicators of relative salinity tolerance. The range of salinity tolerance among desert saltgrass accessions was substantial, though all were more tolerant than bermudagrass. Accessions A77, A48, and A55 suffered little visual shoot injury, and continued shoot and root growth at a low level, when exposed up to 1.0 m (71,625 mg·L–1); sea water is about 35,000 mg·L–1), and therefore can be considered halophytes.

Free access

Traffic stress is one of the major abiotic stresses that limits grass growth in lawn fields. The severity of losses depends on several factors, including the number of events per season, the athletic field size, and the soil moisture content during the traffic incident. Trinexapac-ethyl (TE) is considered to influence plant tolerance to traffic stress. Therefore, the physiological responses of the wheatgrass (Agropyron desertorum L.) and tall fescue (Festuca arundinacea L. cv. Rebel) species to different levels of TE and traffic stress were investigated. A factorial experiment including combination of TE application and traffic stress treatments was performed based on a randomized complete block design (RCBD) with three replications in 2014 and 2015. The treatments, including traffic stress (traffic and nontraffic stress) and TE at three levels (0, 0.25, and 0.5 kg·ha−1), were applied once every 3 weeks. The simulated traffic stress was imposed using a Brinkman traffic simulator (BTS). The results showed that traffic stress reduced the turf quality, relative water content (RWC), total chlorophyll content, and antioxidant activity and increased electrolyte leakage (EL), soluble sugar content (SSC), and malondialdehyde (MDA) in both species. Conversely, TE increased the turf quality, RWC, SSC, and total chlorophyll and resulted in less EL and MDA in both species. Furthermore, TE application increased the superoxide dismutase (SOD) (EC 1.15.1.1), ascorbate peroxidase (APX) (EC 1.11.1.11), and peroxidase (POD) (EC 1.111.1.7) activities, especially under traffic stress conditions. TE application enhanced the resistance to traffic stress in both species by improving the osmotic adjustment and antioxidant activity.

Free access