Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Mohamed Benmoussa x
  • Refine by Access: All x
Clear All Modify Search
Free access

Mohamed Benmoussa and Laurent Gauthier

To achieve high yield and better quality of soilless greenhouse tomato, it is necessary to keep the nutrient concentrations in the root environment at the target levels. Dynamic control of the nutrient solution composition can be used for this purpose. We developed a computer program that dynamically adjusts nutrient solution compositions based on various climatic and agronomic characteristics. The program integrates nutrient uptake and crop transpiration models and is part of a general-purpose greenhouse management and control software system developed at Laval University (GX). The architecture of the system and some simulation results comparing the effect of various control scenarios on the evolution of the composition of nutrient solutions are presented.

Free access

Mohamed Benmoussa and Laurent Gauthier

In soilless culture, the buffering capacity of the root environment for nutrients is low. This, combined with fluctuations of climatic factors and changes in nutrient uptake rates, can lead to nutrient imbalances. In order to achieve high yield and better quality, it is necessary to keep the nutrient concentrations in the root environment at the target levels. This requires frequent analysis and adjustments to the nutrient solution. Currently, leaching of the growing media or renewal of the nutrient solution is commonly used to avoid accumulation or depletion of nutrient in the root environment. However, this practice lowers the efficiency of fertilizers and can lead to the contamination of the ground water. One way to remedy to this problem is through the use of nutrients uptake models to track the composition of the nutrient solutions. The objective of this study was to develop such models. Such models can be used to maintain balanced nutrient solutions for longer periods. This can lead to reduced leaching and improved fertilizer use efficiency. Macronutrient (N, P, K, Ca, and Mg) uptake models were developed for tomato plants grown in an NFT system using data collected from experiments conducted in the Laval Univ. greenhouses. Analysis of the experimental results showed that the main factors affecting nutrients uptakes are light and transpiration.

Free access

Laurent Gauthier, Maher Trigui, André Boisvert, and Mohamed Benmoussa

Transpiration is essential to the performance of tomato plants. In greenhouses, transpiration can be impeded by low vapor-pressure deficits (VPD). An experiment was conducted to measure the effect of VPD on transpiration rates for greenhouse tomatoes grown on a nutrient film. Four treatments were applied: high (0.8 kpa) day and night VPDs; high day and low night (0.4 kPa) VPDs; low day and low night VPDs; and variable VPDs. The VPD was controlled using fogging and ventilation. Hourly transpiration values were recorded. Results show a significant difference between treatments. The measured transpiration rates were compared to the values calculated with a transpiration model. A good fit between measured and calculated values was observed. The model is being used within a dynamic VPD control strategy.