Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Ming Huang x
Clear All Modify Search

Cross-species amplification of 55 microsatellite loci developed in european chestnut (Castanea sativa Mill.) and japanese chestnut (C. crenata Sieb & Zucc.) was tested in three chestnut species from China [C. mollissima Blume, C. seguinii Dode, and C. henryi (Skan.) Rehder & Wilson]. Among all the tested loci, 47 (85.5%), 47 (85.5%), and 44 (80%) were successfully amplified in each of the three Chinese species, respectively. All microsatellite loci tested from C. crenata successfully amplified in the Chinese species, while only 80.5%, 80.5%, and 73.2% of the loci originating from C. sativa amplified in the three Chinese species. The level of polymorphism and mean number of alleles was 58.2% and 4.12 for C. mollissima, 60% and 4.64 for C. seguinii, and 60% and 4.76 for C. henryi, with mean observed heterozygosity ranging from 0.440 to 0.549 and mean expected heterozygosity ranging from 0.506 to 0.615. Transferability of Castanea Mill. microsatellites provides a powerful tool for chestnut breeding programs and conservation genetic studies of Castanea species.

Free access

Heat is a major factor limiting growth of C3 grass species. Elevated CO2 may mitigate the adverse effects of heat stress or enhance heat tolerance. The objective of this study was to determine metabolic changes associated with improvement of heat tolerance by elevated atmospheric CO2 concentration in tall fescue (Festuca arundinacea). Plants (cv. Rembrandt) were exposed to ambient day/night temperature (25/20 °C) or heat stress (35/30 °C) and ambient CO2 concentration (400 ± 10 μmol·mol−1) or double ambient CO2 concentration (800 ± 10 μmol·mol−1) in growth chambers. Turf quality (TQ), shoot growth rate, and leaf electrolyte leakage results demonstrated that heat stress at ambient CO2 concentration inhibits turf growth and reduces cell membrane stability, whereas heat-stressed plants under elevated CO2 concentration exhibit improved TQ, shoot growth rate, and membrane stability. Plants exposed to heat stress under elevated CO2 exhibited a significantly greater amount of several organic acids (shikimic acid, malonic acid, threonic acid, glyceric acid, galactaric acid, and citric acid), amino acids (serine, valine, and 5-oxoproline), and carbohydrates (sucrose and maltose) compared with heat-stressed plants at ambient CO2. The increased production or maintenance of metabolites with important biological functions such as those involved in photosynthesis, respiration, and protein metabolism could play a role in elevated CO2 mitigation of heat stress damage. Therefore, elevated CO2 conditions may contribute to improved heat stress tolerance as exhibited by better TQ and shoot growth of heat-stressed plants. Practices to harness the power of CO2 may be incorporated into turfgrass management for plant adaptation to increasing temperatures, particularly during summer months.

Free access

Low-temperature storage in darkness is usually used for preserving seedlings for a short period. To investigate whether grafted watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] seedlings are superior to non-grafted ones under low-temperature storage in darkness and to study their physiological differences during storage, watermelon (‘Zaojia 84-24’) scions were grafted to pumpkin (Cucurbita moschata Duch. ‘Zhuangshi’) rootstocks. Carbohydrate levels; chlorophyll and malondialdehyde contents; the activities of superoxide dismutase, catalase, and peroxidase; and photochemical efficiency were assayed during 6 days of storage at 15 °C in darkness. After that, seedlings were transplanted into an artificial climate chamber. The net photosynthetic rate and stomatal conductance (g S) were measured on the first and third days after transplanting. The results showed that the grafted watermelon seedlings had more soluble sugar and chlorophyll contents, higher activities of antioxidant enzymes, and less malondialdehyde content than the non-grafted ones after 6 days of storage. In addition, low-temperature storage in darkness damaged the photosystem II of non-grafted watermelon seedlings more than that of grafted ones. After transplanting, grafted seedlings had a higher net photosynthetic rate. The results suggest that grafted watermelon seedlings were more suitable for the low-temperature storage in darkness than the non-grafted ones.

Free access

Chinese cymbidiums (Cymbidium sp.) are important ornamental plants because of their foliage, flower shape, and fragrance. Well-known Chinese cymbidiums mainly include Cymbidium goeringii, Cymbidium faberi, Cymbidium ensifolium, Cymbidium kanran, and Cymbidium sinense. The population genetics of Chinese cymbidiums can be efficiently analyzed using small-scale marker panels with high discriminatory power. In this study, we tested several genic simple sequence repeats (SSRs) and built six genic SSR panels. The panels included several robust markers, which can rapidly assign Chinese cymbidium accessions to their source species. Fifty-three accessions of Chinese cymbidiums were analyzed using 25 markers, which exhibited polymorphism among five species. These markers were ranked according to their discriminatory scores (D scores). The program selected six markers to build an “overall” panel for all Cymbidium classifications and yielded 95.16% population assignment accuracy. Considering one species as the “critical” population and the four other species as one population, we built five genic SSR panels: C. ensifolium panel (four markers, 98.05% accuracy), C. faberi panel (six markers, 95.90% accuracy), C. goeringii panel (six markers, 95.15% accuracy), C. sinense panel (six markers, 96.35% accuracy), and C. kanran panel (five markers, 96.10% accuracy). Genetic distance matrices calculated using the “overall” panels and those derived with the 25 markers were compared. Results showed a high correlation (R = 0.807) with statistical significance (P = 0.042). Moreover, “all panels” revealed higher genetic variations among populations than “all markers.” Hence, the developed panels are suitable for efficient population classification of Chinese cymbidiums.

Free access

Nuclear DNA contents were estimated by flow cytometry in 18 Phalaenopsis Blume species and Doritis pulcherrima Lindl. DNA amounts differed 6.07-fold, from 2.74 pg/diploid nuclear DNA content (2C) in P. sanderiana Rchb.f. to 16.61 pg/2C in P. parishii Rchb.f. Nuclear DNA contents of P. aphrodite Rchb.f. clones, W01-38 (2n = 2x = 38), W01-41 (2n = 3x = 57), and W01-22 (2n = 4x = 76), displayed a linear relationship with their chromosome numbers, indicating the accuracy of flow cytometry. Our results also suggest that the 2C-values of the Phalaenopsis sp. correlate with their chromosome sizes. The comparative analyses of DNA contents may provide information to molecular geneticists and systematists for genome analysis in Phalaenopsis. Endoreduplication was found in various tissues of P. equestris at different levels. The highest degree of endoreduplication in P. equestris was detected in leaves.

Free access

Boron (B) deficiency is widespread in the Anatolia region of Turkey. This could impact production and quality of Brussels sprout (Brassica oleracea L. gemmifera). A 2-year field experiment was conducted to study yield and quality response of four cultivars (Star, Brilliant, Oliver, and Maximus) to B addition (0, 1, 3, and 9 kg·ha−1 B). The optimum economic B rate (OEBR) ranged from 5.5 to 6.3 kg·ha−1 B resulting in soil B levels of 0.94 to 1.13 mg·kg−1. Independent of cultivar, B application decreased tissue nitrogen, calcium, and magnesium but increased tissue phosphorus, potassium, iron, manganese, zinc, and copper content. We conclude a B addition of 6 kg·ha−1 is sufficient to elevate soil B levels to nondeficient levels. Similar studies with different soils and initial soil test B levels are needed to conclude if these critical soil test values and OEBR can be applied across the region.

Free access

Citrus (Citrus sp.) germplasm collections are a valuable resource for citrus genetic breeding studies, and further utilization of the resource requires knowledge of their genotypic and phylogenetic relationships. Diverse citrus accessions, including citron (Citrus medica), mandarin (Citrus reticulata), pummelo (Citrus maxima), papeda (Papeda sp.), trifoliate orange (Poncirus trifoliata), kumquat (Fortunella sp.), and related species, have been housed at the Florida Citrus Arboretum, Winter Haven, FL, but the accessions in the collection have not been genotyped. In this study, a collection of 80 citrus accessions were genotyped using 1536 sweet orange–derived single nucleotide polymorphism (SNP) markers, to determine their SNP fingerprints and to assess genetic diversity, population structure, and phylogenetic relationships, and thereby to test the efficiency of using the single genotype-derived SNP chip with relatively low cost for these analyses. Phylogenetic relationships among the 80 accessions were determined by multivariate analysis. A model-based clustering program detected five basic groups and revealed that C. maxima introgressions varied among mandarin cultivars and segregated in mandarin F1 progeny. In addition, reciprocal differences in C. maxima contributions were observed among citranges (Citrus sinensis × P. trifoliata vs. P. trifoliata × C. sinensis) and may be caused by the influence of cytoplasmic DNA and its effect on selection of cultivars. Inferred admixture structures of many secondary citrus species and important cultivars were confirmed or revealed, including ‘Bergamot’ sour orange (Citrus aurantium), ‘Kinkoji’ (C. reticulata × Citrus paradisi), ‘Hyuganatsu’ orange (Citrus tamurana), and palestine sweet lime (Citrus aurantifolia). The relatively inexpensive SNP array used in this study generated informative genotyping data and led to good consensus and correlations with previously published observations based on whole genome sequencing (WGS) data. The genotyping data and the phylogenetic results may facilitate further exploitation of interesting genotypes in the collection and additional understanding of phylogenetic relationships in citrus.

Free access

An efficient biolistic transformation system of banana combined with a liquid medium selection system was developed during this study. An embryogenic cell suspension (ECS) of Musa acuminata cv. Baxi (AAA) was bombarded with a particle delivery system. After 7 days of restoring culture in liquid M2 medium, embryogenic cells were transferred to a liquid selection M2 medium supplemented with 10 μg/mL hygromycin for resistance screening. The untransformed cell clusters were inhibited or killed, and a small number of transformants proliferated in the liquid selection medium. After the 0th, first, second, and third generation of antibiotic screening, there were 0, 65, 212, and 320, respectively, vitality-resistant buds obtained from a 0.5-mL packed cell volume (PCV) of embryogenic cell suspension. The β-glucuronidase (GUS) staining, polymerase chain reaction (PCR) analysis, and Southern blot hybridization results all demonstrated a 100% positive rate of regenerated resistant seedlings. Interestingly, the number of buds obtained through third-generation screening was almost equal to that obtained from the original ECS in M2 medium without antibiotics. These results suggested that the liquid medium selection system facilitated the proliferation of a positive transgenic ECS, which significantly improved the regeneration rate of transformants. This protocol is suitable for the genetic transformation of all banana genotypes and is highly advantageous to varieties with low callusing potential.

Open Access