Search Results
Lobularia maritima (L.) Desv. is an important ornamental plant. We investigated an efficient method to induce tetraploid plants of L. maritima (L.) Desv. by treating germinating seeds and apical growing points of seedlings with a range of concentrations of colchicine for different periods of time. Examination of the ploidy level by counting chromosome numbers at metaphase confirmed that the chromosome number of diploid plants was 2n = 2x = 24, whereas 2n = 4x = 48 was observed in tetraploid plants. The morphological characteristics of the diploid and colchicine-induced tetraploid plants were compared. Increases in the size of leaves, flowers, and stomata were observed in the tetraploid plants compared with the diploids. However, the stomatal density and plant height of the tetraploid plants were lower than for the diploid plants. This study presents the first report of autotetraploid plants of L. maritima (L.) Desv., and of the successful generation of tetraploid plants with improved ornamental traits by colchicine treatment.
Ethylene response factor (ERF) genes have been characterized in numerous plants, where they are associated with responses to biotic and abiotic stress. Modified atmosphere packaging (MAP) is an effective treatment to prevent lotus root browning. However, the possible relationship between ERF transcription factors and lotus root browning under MAP remains unexplored. In this study, the effects of phenol, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) enzyme activities; and PPO, PAL, POD, and ERF gene expression on fresh-cut lotus root browning were studied with MAP. The expression pattern of ERF2/5 correlated highly with the degree of browning. It is suggested that NnERF2/5 can be used as an important candidate gene for the regulation of fresh-cut lotus root browning under MAP, and the correlation of each gene should be studied further.