Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Min Li x
Clear All Modify Search
Authors: and

Excessive bicarbonate concentrations and high irrigation water pH affect the growth and appearance of nursery plants in southern Florida. A greenhouse experiment consisting of five nitrogen (N) rates of urea or nitric acid was conducted to evaluate the influence of N sources and rates in irrigation water on bicarbonate concentrations, medium pH, and growth and appearance of anthurium (Anthurium andraeanum Lind.) plants. Pot medium pH, dry weight, plant appearance and N uptake by plants were significantly affected by N rates in irrigation water amended with either liquid urea or nitric acid, but the differences between the two N sources were not significant. The optimum growth and the best appearance of anthurium were achieved when N was added to irrigation well water as either urea or nitric acid at a rate of 20 mg·L-1 (ppm) and an electrical conductivity in a range of 0.36 to 0.42 dS·m-1 Nitrogen rates at 80 and 120 mg·L-1 induced adverse plant growth because of the greater salinity of the solutions and the lower pH of the medium.

Full access

Experiments were conducted on 6-month-old chinese ixora (Ixora chinensis Lam.) from February 1999 to April 2000. Floral development was studied with scanning electron microscopy (SEM) to determine the flowering sequences. Morphological characters were used to clarify the stages of flowering processes. The time of organogenesis and flowering arrangement was established through field observations. Floral evocation occurred in early September, floral initiation occurred in the middle of September and floral differentiation began in late September. A distinctly convex apex with bracts around the shoulder indicated the beginning of reproductive development. Subsequently, primary inflorescence axes were observed and differentiated into secondary, tertiary, and quaternary inflorescence axes consecutively in about one and a half months. Once the terminal apex reached the inflorescence bud stage, it would flower without abortion, and this may be assessed as no return. The sepals, petals, stamens, and pistil were well developed thereafter and anthesis was achieved in January through March in the following year. The observation of floral differentiation sequences and investigation of floret arrangement made it certain that chinese ixora had cymose inflorescence (cyme), but not corymb. A quadratic equation was established to predict floret number from the differentiation level (a quantitative description of differentiation stage) of a developed inflorescence.

Free access

This experiment was carried out to obtain a pressure–volume (P-V) curve and Höfler diagram of the cortex tissue of fresh ‘Fuji’ apple fruit (Malus ×domestica Borkh.) with a novel centrifuge method. Based on the P-V curve and Höfler diagram, several water relation parameters of cortex tissue were determined and the interrelationship of these parameters was established. Turgor loss point (TLP) occurred at –1.74 MPa and 73.7% of relative water content (R*). At full hydration, osmotic potential (ψS) was –1.30 MPa and symplastic water accounted for 86.8% of R*. Bulk elastic modulus decreased linearly by 28% as pressure potential declined from 1.30 MPa at full hydration to zero at the TLP. This centrifuge technique can provide a simple and efficient way to determine water relation parameters of fleshy fruits.

Free access

Codiaeum variegatum (L.) Blume, commonly known as crotons, are among the most popular ornamental foliage plants cultivated for either landscaping or interiorscaping. Currently, more than 300 cultivars are available; each has a distinct phenotype, particularly in leaf morphology. Thus far, there is no information regarding their genetic relationships. In this study, genetic relatedness of 44 cultivars of C. variegatum was investigated using amplified fragment length polymorphism (AFLP) markers. Fourteen primer combinations generated a total of 549 AFLP fragments, which were used to estimate genetic distances and construct dendrograms based on the neighbor-joining method. The 44 cultivars were divided into seven clusters, which concurred with the known history of croton geographical isolation, adaptation, introduction, and breeding activities but differed from the classification made by the Croton Society based on leaf morphology. The established genetic relationships could be important for future germplasm identification and conservation and new cultivar development. Additionally, genetic distance among the 44 cultivars was 0.322 or less, indicating that they have a narrow genetic base. The narrow genetic base may indicate that the cultivars were derived from a common progenitor. On the other hand, 81% of the 549 fragments were polymorphic and the average polymorphic information content was 0.22, which suggests that the cultivars are genetically highly polymorphic. The high polymorphisms may be attributed to significant gene loss or gain facilitated by mutation and/or chromosome variation, thus contributing to a wide range of leaf morphological differences among cultivars.

Free access

Codiaeum variegatum (L.) Blume is one of the most popular ornamental foliage plants. It encompasses more than 300 recognized cultivars valued by their wide range of leaf shapes and vivid foliage colors. Thus far, only limited information is available regarding the genetic basis of their leaf morphological variation. This study investigated the chromosome numbers and karyotypes of seven phenotypically diverse cultivars. Root-tip cells were fixed, mounted, and observed under light microscopy. Results showed that chromosome numbers in the mitotic metaphase of the seven cultivars were high and variable and ranged from 2n = 66, 70, 72, 76, 80, 82, 84, to 2n = 96, indicating that the cultivars are polyploid and some could be aneuploid. Genetic mosaics occurred in one of the seven cultivars. Additionally, each cultivar had its own karyotype. There were no relationships between chromosome numbers or karyotypes and leaf morphology. Results from this study suggest that the morphological diversity among cultivars of this species could be in part attributed to high variation in chromosome numbers and karyotypes.

Free access

Pachira aquatica Aubl. has recently been introduced as an ornamental foliage plant and is widely used for interiorscaping. Its growth and use under low light conditions, however, have two problems: leaf abscission and accelerated internode elongation. This study was undertaken to determine if production light intensity and foliar application of paclobutrazol [β-(4-chlorophenyl)methyl-α-(1,1-dimethylethyl)-1H- 1,2,4- triazole-1-ethanol] improved plant growth and subsequent interior performance. Two-year-old P. aquatica trunks were planted in 15-cm diameter plastic pots using a peat-based medium and were grown in a shaded greenhouse under three daily maximum photosynthetic photon flux densities (PPFD) of 285, 350, and 550 μmol·m−2·s−1. Plant canopy heights, average widths, and internode lengths were recorded monthly over a 1-year production period. Two months after planting, the plant canopy was sprayed once with paclobutrazol solutions at concentrations of 0, 50, and 150 mg·L−1, ≈15 mL per plant. Before the plants were placed indoors under a PPFD of 18 μmol·m−2·s−1 for 6 months, net photosynthetic rates, quantum yield, and light saturation and compensation points were determined. Results showed that lowering production light levels did not significantly affect canopy height, width, or internode length but affected the photosynthetic light response curve and reduced the light compensation point. Foliar application of paclobutrazol reduced internode length, thereby resulting in plants with reduced canopy height and width and more compact growth form. Paclobutrazol application also reduced the light compensation point of plants grown under 550 μmol·m−2·s−1. Plants with the compact growth form did not grow substantially, dropped fewer leaflets, and thus maintained their aesthetic appearance after placement indoors for 6 months. These results indicated that the ornamental value and interior performance of P. aquatica plants can be significantly improved by producing them under a PPFD range between 285 and 350 μmol·m−2·s−1 and foliar spraying of paclobutrazol once at a concentration between 50 and 150 mg·L−1.

Free access

This study evaluated the potential for using cowpeat, a composted dairy manure, as a component of container substrates for foliage plant propagation. Using a commercial formulation (20% perlite and 20% vermiculite with 60% Canadian or Florida peat based on volume) as controls, peat was replaced by cowpeat at 10% increments up to 60%, which resulted in a total of 14 substrates. Physical and chemical properties such as air space, bulk density, container capacity, total porosity, pH, carbon-to-nitrogen ratio, and cation exchange capacity of the cowpeat-substituted substrates were largely similar to those of the respective control. However, the electrical conductivity (EC) increased with the increased volume of cowpeat. The 14 substrates were used for rooting single-node cuttings of golden pothos (Epipremnum aureum) and heartleaf philodendron (Philodendron scandens ssp. oxycardium) and three-node cuttings of ‘Florida Spire’ fig (Ficus benjamina) and germinating seeds of sprenger asparagus (Asparagus densiflorus) in a shaded greenhouse. All cuttings rooted in the 14 substrates, and the resultant shoot and root dry weights of golden pothos and ‘Florida Spire’ fig 2 months after rooting did not significantly vary across seven Canadian peat- or Florida peat-based substrates. Shoot dry weights of heartleaf philodendron were also similar across substrates, but the root dry weight produced in the Canadian peat-based control substrate was much greater than that produced in the substrate containing 60% cowpeat. Root dry weight and root length produced in the Florida peat-based control substrate were also significantly greater than those produced in substrates substituted by 60% cowpeat. These results may indicate that cuttings of golden pothos and ‘Florida Spire’ fig are more tolerant of higher EC than those of heartleaf philodendron, as the substrate with 60% cowpeat had EC ≥ 4.16 dS·m−1. Seed germination rates of sprenger asparagus from cowpeat-substituted Canadian peat-based substrates were greater than or comparable to those of the control substrate. Seed germination rates were similar across the seven Florida peat-based substrates. The root-to-shoot ratios of seedlings germinated from both control substrates were significantly greater than those germinated from substrates substituted by cowpeat. This difference could be partially explained by the higher nutrient content in cowpeat-substituted substrates where shoot growth was favored over root growth. Propagation is a critical stage in commercial production of containerized plants. The success in using up to 60% cowpeat in rooting and seed germination substrates may suggest that cowpeat could be an alternative to peat for foliage plant propagation.

Full access

Paphiopedilum armeniacum S. C. Chen et F. Y. Liu is endemic to China and has great ornamental value. Little is known about its nutrient requirement for growth and reproduction after deflasking (transplantation of seedlings from culture vessels to pots). We studied the effects of adding nitrogen (N) (0, 105, 210, and 420 mg·L−1) on the vegetative growth and reproduction of P. armeniacum. N enrichment improved leaf area and lengthened the leaf lifespan during the vegetative stage. The effects of N application on flower size were minor. The intermediate N level of 210 mg·L−1 (MN) increased the seed capsule weight, seed germination rate, and improved the growth of seedlings that developed from seeds of MN-treated plants. N fertilizer exerted little influence on ramet emergence and ramet number per plant, but a low N concentration of 105 mg·L−1 promoted the leaf number and leaf area of ramets. Appropriate N levels for P. armeniacum in production and cultivation should be determined according to different production objectives.

Free access

Lobularia maritima (L.) Desv. is an important ornamental plant. We investigated an efficient method to induce tetraploid plants of L. maritima (L.) Desv. by treating germinating seeds and apical growing points of seedlings with a range of concentrations of colchicine for different periods of time. Examination of the ploidy level by counting chromosome numbers at metaphase confirmed that the chromosome number of diploid plants was 2n = 2x = 24, whereas 2n = 4x = 48 was observed in tetraploid plants. The morphological characteristics of the diploid and colchicine-induced tetraploid plants were compared. Increases in the size of leaves, flowers, and stomata were observed in the tetraploid plants compared with the diploids. However, the stomatal density and plant height of the tetraploid plants were lower than for the diploid plants. This study presents the first report of autotetraploid plants of L. maritima (L.) Desv., and of the successful generation of tetraploid plants with improved ornamental traits by colchicine treatment.

Free access