Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Miller B. McDonald x
  • Refine by Access: All x
Clear All Modify Search
Free access

Jianhua Zhang and Miller B. McDonald

The accelerated aging vigor test subjects seeds to high temperatures (41°C) and relative humidity (about 100%) for short durations (usually 72 hours). These recommendations, however, have been developed for large-seeded agronomic crops and may be too severe for small-seeded flower crops that deteriorate rapidly during storage such as impatiens. We examined the effect of aging regime duration (48, 72, and 96 hours) and temperature (38 and 41°C) as well as relative humidity using three saturated salt solutions (KCl–87% RH, NaCl–76% RH, and NaBr–55% RH) on two commercial impatiens seed lots differing in seed vigor but not percentage germination. The greatest differences in percentage germination after 4 days were found among the treatments of 48 hours for KCl, 72 hours for NaCl, and 96 hours for NaBr. While any of these saturated salt solutions may be used in a commercial situation to determine impatiens seed vigor, we suggest that a total 7-day test period consisting of 72 hours aging at 41°C using saturated NaCl with germination being determined 4 days after aging is most convenient.

Free access

Jianhua Zhang and Miller B. McDonald

Varietal identification of cyclamen and petunia is important for flower seed production because these crops are marketed as hybrids and genetic purity determinations assure the purity of the seed lot and the success of hybridization. Random amplified polymorphic DNA (RAPD) banding patterns have been shown to be useful in identifying genotypes of various crops. This molecular biology technique was applied to five commercial cyclamen and six petunia hybrids. Using bulk seed/seedling samples, the varieties could be differentiated. However, when individual seeds of the cyclamen hybrid were tested, differing polymorphisms were observed. These variations were attributed to genetic variability in the inbred parents. We conclude that the genetic purity of cyclamen seeds can be improved and that the use of RAPDs can assist breeders of hybrid flowering crops in better monitoring seed quality.

Free access

Zhang Jianhua, Miller B. McDonald, and Patricia M. Sweeney

This study examined the use of random amplified polymorphic DNA (RAPD) markers as a means to identify cultivars of petunia (Petunia hybrida Vilm) seedlings and cyclamen (Cyclamen persicum Mill.) seeds and to determine the genetic purity within cyclamen seeds. Bulked samples of six petunia and five cyclamen hybrid cultivars, respectively, produced consistent RAPD marker profiles. Evaluation of individual seeds from a single cyclamen hybrid produced polymorphic banding patterns that were attributed to genetic variability present in the female and male inbred parents. These results show that RAPD makers can be used to quickly assess the genetic purity of selected cultivars of these two flower seed crops.

Free access

W.R. Miller, R.E. McDonald, and B.J. Smittle

Freshly harvested `Sharpblue' blueberries (Vaccinium spp.), a hybrid of complex parentage (Sharpe and Sherman, 1976), were irradiated by electron beam at 0, 0.25, 0.5, 0.75, or 1.0 kGy to determine its effects on condition and quality after treatment and subsequent storage. Berry firmness was not affected by increased doses following 1 or 3 days of storage at 1C, but it declined with higher doses when stored for 7 days at 1C. In general, berry flavor and texture declined as dosage increased; however, neither flavor nor texture were rated unacceptable by a sensory panel. Weight loss, decay, soluble solids concentration, acidity, pH, skin color, or waxy bloom were not affected by dosage or storage.

Free access

Roel Rabara, Samuel Contreras, David Tay, Mark A. Bennett, and Miller B. McDonald

Germinability and desiccation tolerance are important attributes that seeds acquire during their development. The timing in the expression of these characteristics is important to understand how environmental conditions affecting the mother plant influence seed quality. Lettuce plants (cv. Tango) were cultivated in the greenhouse. Seed germination, under light and darkness, was evaluated in fresh and dry seeds at 3, 5, 7, 9, 11, 13, 15, and 17 days after flowering (DAF). Desiccation was performed ≈1 h after harvest by placing the seeds at 25 °C and ≈53% RH. The seed moisture level after desiccation decreased from ∼14% for 3 DAF seed to ∼7% for 7 DAF seed, and then remained constant until the last sampling. Seeds achieved maximum dry weight (physiological maturity) at ∼13 DAF. Germination of fresh seeds increased from 0% at 3DAF to ∼80% at 5 DAF, reaching 100% at 7 DAF. Dry seeds did not germinate when they were 3 or 5 DAF. Seeds at 7 DAF had ∼10% germination and at 9 DAF ∼100%. When germinated in the dark, an increase in germination from 0% in fresh seeds at 3 DAF to 50% germination at 5 DAF was observed. However, seeds at 9 DAF had dark germination values that decreased to 0% and increased again to ∼70% germination at 13 DAF. Dry seeds had no dark germination until 7 DAF, with variable and low germination (below 20%) until 11 DAF, then germination reached a maximum of ∼55% at 13 DAF and decreased to below 10% at 17 DAF. According to these results, lettuce seed germinability and desiccation tolerance were reached sooner than physiological maturity. In the dark, germination of fresh seeds presented a curve with two peaks suggesting that, depending on the seed developmental stage, two different physiological mechanisms restrict dark germination.

Free access

H. Brent Pemberton, Yin-Tung Wang, Garry V. McDonald, Anil P. Ranwala, and William B. Miller

Case-cooled bulbs of Lilium longiflorum `Nellie White' were forced to flowering. When the tepals on the first primary flower bud split, plants were placed at 2 °C in the dark for 0, 4, or 21 days. After storage, plants were placed in a postharvest evaluation room with constant 21 °C and 18 μmol·m-2·-1 cool-white fluorescent light. Lower leaves, upper leaves, and tepals of the first primary flower from a concurrent set of plants were harvested for carbohydrate analysis using HPLC. Storage time did not affect carbohydrate levels in the lower leaf or tepal samples, but sucrose and starch levels decreased while glucose and fructose levels increased in the upper leaf tissue with increasing storage time. These changes were correlated with a decrease in postharvest longevity for the first four primary flowers. Longevity of the fifth primary flower and total postharvest life of the five primary flowers was unaffected by storage.