Search Results
One of the most widely used substrates in nursery production is peat, which is used as plain substrate or mixed with other media. Peat use is problematic, primarily because of the high price and the environmental implications connected with its extraction and disposal. For these reasons, the exploitation will be restricted in the future in both Europe and America. Thus, researchers are under pressure to find alternative substrates that can be used in an inexpensive and environmentally friendly way. Although aged, carbonized and composted rice hulls have been used to a limited extent, more studies are needed to characterize fresh rice hulls as a growing medium. This research was aimed at characterizing fresh hulls after being ground in different particle sizes, and comparing them with peat. Ground hulls were separated into four fractions (6-, 4-, 2-, and 1-mm diameter), which were characterized for pH, EC, CEC, organic matter, and total nitrogen content. The water retention curve was also estimated and the following hydraulic characteristics were measured and compared: TP, CC, AFP, EAW, and WBC. As expected, pH, N, and C content and CEC did not differ among rice hull fractions, while EC showed a slight but constant increase when particle dimensions decreased. Compared to peat, the TP of rice hulls was smaller independently from particle dimensions, but AFP was 19.5%, 44,1%, 114.2%, and 115.8% higher for 1-, 2-, 4-, and 6-mm particles, respectively, indicating a very good aeration capacity. EAW and WBC were higher only in 1- and 2-mm particles. A further experiment aimed at comparing the behavior of transplants in rice hulls (6 mm) and peat showed that tomato plantlets grew slower in the former, although transplants were of good, marketable quality.