Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Miguel H. Ahumada x
  • Refine by Access: All x
Clear All Modify Search
Free access

Miguel H. Ahumada, Elizabeth J. Mitcham, and Denise G. Moore

Nonfumigated `Thompson Seedless' table grapes were stored in air or one of four atmospheres: 0.5% O2 and 35% CO2; 0.5% O2 and 45% CO2; 0.5% O2 and 55% CO2; and 100% CO2. Grapes were stored at 5C and 20C for 6 and 4.5 days, respectively. The fruit were evaluated for weight loss, berry firmness, soluble solids, titratable acidity, berry shattering, rachis browning, berry browning, and volatiles (acetaldehyde and ethanol). Fruit quality was not affected at 5C; however, at 20C, controlled atmosphere (CA) treatments had a detrimental effect on rachis browning and soluble solids. CA at both temperatures induced the production of high levels of acetaldehyde and ethanol. After treatment at 5C, volatile concentrations were two-thirds lower than at 20C. A consumer taste panel evaluated fruit 3 days after removal from CA. Consumer preference was negatively affected by the CA treatments at 20C; however at 5C, consumer preferencewas not affected by the treatments. Preliminary data for mortality of Omnivorous Leafroller pupae (Platynota stultana), Western Flower Thrips adults (Frankliniella occidentalis), and Pacific Spider Mite adults (Tetranychus pacificus) indicate that many of these treatments would provide quarantine security.

Free access

Miguel H. Ahumada, Elizabeth J. Mitcham, and Denise G. Moore

Non-SO2-fumigated `Thompson Seedless' table grapes (Vitis vinifera L.) were stored at 5 or 20 °C for 6 and 4.5 days, respectively, in air or one of four insecticidal controlled atmospheres (ICA); 0.5% O2 + 35% CO2; 0.5% O2 + 45% CO2; 0.5% O2 + 55% CO2; or 100% CO2. The fruit were evaluated for weight loss, berry firmness, soluble solids concentration (SSC), titratable acidity, berry shattering, rachis browning, berry browning, and volatiles (acetaldehyde and ethanol). Fruit quality was not affected at 5 °C with the exception of greater rachis browning in fruit treated with 0.5% O2 + 45% CO2. At 20 °C, ICA treatments maintained greener rachis compared to the air control; however, SSC was reduced in the fruit treated with 55% and 100% CO2. At both temperatures, ICA induced the production of high levels of acetaldehyde and ethanol. Ethanol concentrations were two-thirds lower at 5 °C than at 20 °C. Consumer preference was negatively affected by some ICA treatments for grapes kept at 20 °C, but not by any of the treatments at 5 °C. Preliminary data for mortality of omnivorous leafroller pupae (Platynota stultana Walshingham), western flower thrips (Frankliniella occidentalis Pergande) adults and larvae, and pacific spider mite (Tetranychus pacificus McGregor) adults and larvae indicate that many of the ICA treatments would provide significant insect control.

Free access

Ashraf Abdallah, Miguel H. Ahumada, and Thomas M. Gradziel

Seed of California almond [Prunus dulcis (Mill.) D.A. Webb, syn. P. amygdalus Batsch, and P. communis (L.) Arcangeli, non-Huds.] genotypes contained very low saturated fatty acids, high monounsaturated fatty acids, and low polyunsaturated fatty acids. Kernel oil consisted primarily of five fatty acids: palmetic, palmetoleic, stearic, oleic, and linoleic. Linolenic acid was only present in amounts of <0.02% and only in a few samples. Small but significant differences among genotypes and sampling sites were found in the proportions of palmetic, palmetoleic, and stearic fatty acids. The major differences in fatty acid composition among genotypes was found in the proportions of oleic, a monounsaturated fatty acid, and linoleic, a polyunsaturated fatty acid. The proportion of oleic acid was highest, ranging from ≈62% to 76%, and was highly and negatively correlated with linoleic acid levels. Usable genetic variation and a significant genotype × environment interaction were identified for oil content and composition. The introgression of new germplasm from peach and related species does not appear to reduce oil quantity or quality, and may offer opportunities for further genetic improvement of kernel oil composition.

Full access

Maren J. Mochizuki, Oleg Daugovish, Miguel H. Ahumada, Shawn Ashkan, and Carol J. Lovatt

The objectives of this preliminary study were to optimize a carbon dioxide (CO2) application system for field-grown raspberry (Rubus ideaus) under high tunnels and then to compare plant photosynthesis, growth, and fruit yield with and without CO2. Based on plant photosynthesis measures before CO2 application, we placed the drip irrigation tape to apply CO2 in the middle of the plant canopy at 100 cm aboveground and split daily CO2 application from 0700 to 1100 hr and 1400 to 1800 hr. In the morning hours, CO2 concentration in the tunnel was 18% higher than in the afternoon; wind speed often increased later in the day, which may have moved the CO2 even in the tunnel. We maintained an average CO2 concentration of 436 ppm for 4 months, applying about 25 tons of CO2. In tunnels enriched with CO2, yield and berry size from plots 20 ft in length increased 12% and 5%, respectively, compared with untreated tunnels. We measured no corresponding differential response in the number of 6-oz baskets harvested from the full tunnel, leaf CO2 assimilation, stomatal conductance (g S), or fluorescence, raspberry cane height, pruned cane biomass, cane diameter, or carbohydrate content of the fruit after CO2 application. Documenting potential plant physiological changes should therefore be a focus of future research.