Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Michele Elliot x
  • Refine by Access: All x
Clear All Modify Search
Free access

Wilhelmina Kalt, Agnes M. Rimando, Michele Elliot, and Charles F. Forney

Recent interest in the human health-promoting properties of fruit phenolics, and especially fruit flavonoids, has stimulated research on how these secondary metabolites may be affected by pre- and postharvest horticultural factors. Resveratrol, although a minor phenolic in many fruit, possesses potent bioactivities, and is therefore of particular interest. To study the effects of postharvest storage and UV-C irradiation on selected phenolic components and antioxidant capacity of cranberry (Vaccinium macrocarpon), fruit of cv. Pilgrim, Stevens, and Bergman, were irradiated with UV-C at levels between 0 and 2.0 KJ·m-2, followed by storage at 9 °C for 7 and 17 d. Total phenolic content did not change during storage. However, resveratrol content was higher and antioxidant capacity (ORAC) was lower at 7 days of storage compared to 17 days. There was no main effect of UV-C on total phenolics, anthocyanins, resveratrol, or ORAC. However, there was an interaction between storage time and UV-C irradiation. Anthocyanin content was lower at 7 days, and higher at 17 days, at UV dosages of 1.0 or 2.0 KJ·m-2. Resveratrol content was higher in UV-C irradiated fruit at 7 days, while at 17 days there was no difference between UV-treated and untreated fruit.

Free access

Charles F. Forney, Stephanie Bishop, Michele Elliot, and Vivian Agar

Extending the storage life of fresh cranberries (Vaccinium macrocarpon Ait.) requires an optimum storage environment to minimize decay and physiological breakdown (PB). To assess the effects of relative humidity (RH) and temperature on storage life, cranberry fruit from four bogs were stored over calcium nitrate, sodium chloride, or potassium nitrate salts, which maintained RH at 75%, 88%, and 98%, respectively. Containers at each RH were held at 0, 3, 5, 7, or 10 °C and fruit quality was evaluated monthly for 6 months. Both decay and PB increased with increasing RH in storage. After 6 months, 32%, 38%, and 54% of fruit were decayed and 28%, 31%, and 36% developed PB when stored in 75%, 88%, and 98% RH, respectively. The effects of RH continued to be apparent after fruit were removed from storage, graded, and held for 7 days at 20 °C. The decay of graded fruit after 4 months of storage in 75%, 88%, or 98% RH was 10%, 13%, and 31%, respectively, while PB was 12%, 12%, and 17%, respectively. Fresh weight loss decreased as RH increased averaging 1.9%, 1.4%, and 0.7% per month for storage in 75%, 88%, and 98% RH, respectively. Fruit firmness was not affected by RH. Storage temperature had little effect on decay. However, PB was greatest in fruit stored at 10 °C, encompassing 55% of fruit after 5 months of storage. When graded fruit were held an additional 7 days at 20 °C, decay and PB were greater in fruit previously stored at 0 or 3 °C than at 5, 7, or 10 °C. Fresh weight loss increased as storage temperature increased, averaging 0.8%, 1.0%, 1.3%, 1.7%, and 1.9% per month at 0, 3, 5, 7, and 10 °C, respectively. Fruit firmness decreased during storage, but was not affected by storage temperature. To maximize storage and shelf life, cranberry fruit should be stored in a RH of about 75% at 5 °C.

Free access

D. Mark Hodges, Gene E. Lester, Robert D. Meyer, Vivian E. Willmets, and Michele L. Elliot

Consumption of phytochemicals has been associated with reduced risks of human health dysfunctions such as cancers and heart disease. Such information has led to increased sales of fruits and vegetables. For example, in the United States, an estimated 23% increase in melon consumption (up to 13.2 lbs/capita/annum) has been recorded over 16 years. However, some health issues have been attributed to cantaloupe due to bacteria such as Salmonella attaching to inaccessible sites, such as the rind netting. Honeydew melons do not have a netted rind. The purpose of this study was to compare concentrations of antioxidants between cantaloupe and both green- and orange-fleshed honeydew melons during 14 days of storage to determine if orange-fleshed honeydew melon would represent a feasible alterative to cantaloupe to the increasingly health/food safety-conscious consumer. Cantaloupe (`Cruiser'; C), green-fleshed Honeydew (`HoneyBrew'; HB), and orange-fleshed Honeydew (`OrangeDew'; OD) melons were harvested in Texas at the beginning and at the end of the production season. β-carotene content was highest in OD, followed by C; no β-carotene was detected in HB. β-carotene levels did not change during storage. Phenolic levels increased in all three melon species during storage, whereas total ascorbate content declined in OD and in early harvest HB. Ascorbate peroxidase activities were lowest in OD, perhaps due to the lower ascorbate levels; little difference between the melon species in activities of the other ascorbate-associated enzymes were observed. Based on the phytochemicals measured in this study, choosing non-netted OD over netted C in order to reduce potential exposure to pathogens would not represent a less healthy food choice.