Search Results
A dynamic management strategy for supplemental lighting in greenhouses was developed. It makes use of a plant growth model and of a rule-based decisionmaking protocol within the framework of a generic greenhouse climate management software system. The model, an adapted version of SUCROS87, tracks plant growth and predicts dry weight production based on measured or estimated values of light intensity, temperature, and CO2 concentration. A set of logical predicates (rules) implements the strategy's behavior. Optimization of lamp use was conducted as a function of economic criteria that enable a comparison between the additional income associated with yield increases due to supplemental lighting and incurred cost increases. Although the model is not perfectly reliable in its predictions, the system can be used to simulate the effect of changes to economic parameters on the decisions of the management strategy. The dynamic strategy described here differs from conventional supplemental lighting scenarios in the sense that it increases the length of the period of supplemental lighting when the daily solar light integral is low, and reduces or eliminates the use of supplemental lighting when the weather forecast predicts that the daily solar light integral will exceed plant requirements.