Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Michael S. Burton x
  • All content x
Clear All Modify Search
Free access

Mark A. Ritenour*, Peter J. Stoffella, Zhenli He, and Michael S. Burton

Previous research suggests that treatment of sliced or vacuum-infiltrated tomato fruit with calcium chloride (CaCl2) solutions may reduce decay, but no work on dipping whole tomatoes has been reported. In the present experiments, `FL 47' tomato fruit were collected at the mature green or pink stage from a local packinghouse, held at 12.5 or 25.0 °C overnight, and then dipped in solutions with 0.5% to 5% CaCl2 with or without 150 ppm sodium hypochlorite. Fruit were dipped for 1 to 4 minutes at temperatures ranging from 0 to 35 °C. Mature green fruit dipped in solutions with 0.5% and 1.0% CaCl2 at 35 °C had significantly lower rates of decay following storage at 12.5 °C (90% RH) than the control (27% vs. 36% decay, respectively). These fruit were also significantly softer after 2 weeks of storage than control fruit (0.85 mm vs. 0.74 mm deformation, respectively) and appeared to be slightly more ripe. Decay in fruit dipped in 2% CaCl2 was not significantly different from the control, while fruit dipped in 3% to 5% CaCl2 developed significantly more decay than control fruit. The CaCl2 treatments had no significant effect on decay of fruit treated at the pink stage and none of the treatments at 0 °C significantly affected postharvest decay. Dips in 2% to 5% CaCl2 significantly increased tomato peel calcium content after storage. Dipping time had no significant effect on peel calcium content.

Free access

Charles A. Powell, Michael S. Burton, Robert Pelosi, Mark A. Ritenour, and Robert C. Bullock

Population density of citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), was monitored in a Florida citrus grove for 5 years by scouting weekly for larval-induced mines (leafminer-created tunnels in the leaves) in a replicated citrus plot treated with seven insect control regimes: Admire (imidacloprid) applied at 12, 6, 3, or 2-month intervals; Temik (aldicarb) applied annually; Metasystox-R (oxydemeton-methyl) applied annually; or no insect control. Leafminer populations were highest during the warmer months (April to September) and lowest during the cooler months (November to March). Populations peaked during June in all 5 years monitored. Trees treated with Temik or Metasystox-R had the same number of mines as the untreated controls. A biannual treatment with Admire reduced leafminer damage (number of mines) all 5 years compared with the controls. Additional Admire applications further reduced damage during some, but not all, years. A single application of Admire significantly reduced mines in 3 of the 5 years.

Full access

Mark A. Ritenour, Robert R. Pelosi, Michael S. Burton, Eddie W. Stover, Huating Dou, and T. Gregory McCollum

Studies were conducted between November 1999 and April 2003 to evaluate the effectiveness of compounds applied preharvest for reducing postharvest decay on many types of fresh citrus (Citrus spp.) fruit. Commercially mature fruit were harvested two different times after the compounds were applied, degreened when necessary, washed, waxed (without fungicide), and then stored at 50 °F (10.0 °C) with 90% relative humidity. Compared to control (unsprayed) fruit, preharvest application of benomyl or thiophanate-methyl resulted in significantly (P < 0.05) less decay of citrus fruit after storage in nine out of ten experiments, often reducing decay by about half. In one experiment, pyraclostrobin and phosphorous acid also significantly decreased total decay by 29% and 36%, respectively, after storage compared to the control. Only benomyl and thiophanate-methyl significantly reduced stem-end rot (SER; primarily Diplodia natalensis or Phomopsis citri) after storage, with an average of 65% less decay compared to the control. Though benomyl significantly reduced anthracnose (Colletotrichum gloeosporioides) in two of four tests with substantial (>20%) infection and phosphorous acid significantly reduced it once, thiophanate-methyl did not significantly reduce the incidence of anthracnose postharvest. The data suggests that preharvest application of thiophanate-methyl may reduce postharvest SER and total decay similar to preharvest benomyl treatments.

Free access

Charles A. Powell, Michael S. Burton, Robert R. Pelosi, Phyllis A. Rundell, Mark A. Ritenour, and Robert C. Bullock

The population densities of the brown citrus aphid (BrCA) (Toxoptera citricidus Kirkaldy) and the spirea aphid (SA) Aphis spiraecola Patch were monitored by scouting weekly for 6 years in a replicated citrus plot treated with 7 insect control regimes: Admire (imidacloprid) applied at 12, 6, 3, or 2 month intervals; Temik applied annually; Meta-Systox-R applied annually; or no insect control. The numbers of both aphid species varied greatly from month to month and year to year. The brown citrus aphid was normally only detected in the fall (August through December) with populations peaking in September, October, or December depending on the year. The spirea aphid could be detected throughout the year during years when overall populations were high. Spirea aphid populations often peaked both in the spring and fall. Annual applications of Temik or Metasystox were ineffective in reducing aphid populations. Generally, all four Admire treatment regimes controlled aphids, although at least 2 annual Admire treatments per year were required to control the spirea aphid during some years.