Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Michael J. Mahovic x
Clear All Modify Search
Full access

Michael J. Mahovic, Keith R. Schneider, Kim Cordasco and Jeffrey K. Brecht

The effect of ethylene on the survival of Salmonella cells residing on unwounded surfaces of tomato (Solanum lycopersicum) fruit was investigated in this study. Inoculated fruit were stored in flow-through chambers that were adjusted to maintain an environment simulating a tomato ripening room. Fruit were held at 20 °C and ≥95% relative humidity after surface inoculation with the low virulence and rifamycin-resistant pathogen S. enterica ssp. enterica serovar Typhimurium strain LT2 (S. Typhimurium). Tomato fruit were treated either with a continuous flow (rate, ≈200 mL·min−1) of air or with ≥150 μL·L−1 ethylene in air. Bacterial recovery at 0, 24, 48, and 72 h after initiation of treatment showed that total populations of the S. Typhimurium cells declined in both the air and ethylene treatments during the first 24 to 48 h of storage, then increased to near initial levels by 72 h, similar to decline and recovery reported by other researchers in nonethylene treatment trials. These results suggest that although Salmonella can survive on the surfaces of tomato fruit in typical ripening rooms, proliferation of Salmonella is neither promoted nor inhibited by ethylene exposure.

Full access

Michael J. Mahovic, Rajya Shukla, Renée M. Goodrich-Schneider, Michael V. Wood, Jeffrey K. Brecht and Keith R. Schneider

It has been reported that netted muskmelons (Cucumis melo var. cantalupensis) treated with moist heat (steam or hot-water immersion) have reduced populations of vegetative surface organisms that may be responsible for spoilage, or that may be pathogenic to consumers. It is unknown, however, what affect a similar heat treatment may have on infesting bacterial endospores (which are dormant, nonreproductive structures that are resistant to environmental stress). Also, any heat treatment used must be effective without exceeding the treated melon's thermal damage threshold. In this study, natural microflora on muskmelon rind pieces treated from 75 to 95 °C for 3 minutes and whole fruit rinds inoculated with Bacillus atrophaeus spores and treated at 85 °C for 3 minutes were observed as a model system to explore the efficacy of moist heat in reducing surface populations of bacterial spores. There were significant reductions in populations of aerobic, nonspore-forming microbes, although the treatments had little to no effect on either the recoverable populations of inoculated B. atrophaeus spores or indigenous spore-forming bacteria. Recovery studies suggested a less than 2 log10 unit reduction of inoculated B. atrophaeus spores after a 3-minute, 85 °C moist heat treatment, and no heat injury symptoms developed on melons during storage for 2 weeks at 5 °C. Increasing treatment temperature from 75 to 95 °C resulted in no increase in efficacy in terms of recovery of indigenous vegetative bacteria. The results of this study suggest that aqueous heat treatment is not a suitable method for reducing populations of the resting structures of spore-forming bacteria from the surface of netted muskmelons.