Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Michael C. Shannon x
  • All content x
Clear All Modify Search
Free access

Michael C. Shannon

The lack of improvement for salt tolerance has been attributed to insufficient genetic variation, a need for rapid and reliable genetic markers for screening, and the complexities of salinity × environment interactions. Salt tolerance is a quantitative character that has been defined in a multitude of ways subject to changes with plant development and differentiation; thus, assessing salt tolerance among genotypes that differ in growth or development rate is difficult. Salt tolerance also varies based upon concentrations of both major and minor nutrients in the root zone. Plant growth models may provide a method to integrate the complexities of plant responses to salinity stress with-the relevant environmental variables that interact with the measurement of tolerance. Mechanistic models have been developed over the last few years that are responsive to nitrogen or drought stress but not to salinity stress. Models responsive to salinity stress would provide insights for breeders and aid in the development of more practical research on the physiological mechanisms of plant salt tolerance.

Full access

Michael C. Shannon

The lack of improvement for salt tolerance has been attributed to insufficient genetic variation, a need for rapid and reliable genetic markers for screening, and the complexities of salinity × environment interactions. Salt tolerance is a quantitative characteristic that has been defined in many ways subject to changes with plant development and differentiation; thus, assessing salt tolerance among genotypes that differ in growth or development rate is difficult. Salt tolerance also varies based on concentrations of major and minor nutrients in the root zone. Plant growth models may provide a method to integrate the complexities of plant responses to salinity stress with the relevant environmental variables that interact with the measurement of tolerance. Mechanistic models have been developed over the last few years that are responsive to nitrogen or drought stress but not to salinity stress. Models responsive to salinity stress would provide insights for breeders and aid in developing more practical research on the physiological mechanisms of plant salt tolerance.

Free access

Michael C. Shannon and Catherine M. Grieve

Free access

Michael C. Shannon and Anne F. Wrona

A salt-tolerance selected F5 generation from a cross between the wild tomato species, Lycopersicon cheesmanii, ecotype LA 1401, and the cultivated species, L. esculentum Mill. (cv Heinz 1350) was compared to the wild parental line in a solution culture experiment to determine the effects of selection on salt tolerance, and ion discrimination and accumulation characteristics in the selected line. Seedlings were transplanted to nutrient solutions at the 3 to 4-leaf stage of growth and after a 1-week period of adjustment, were salinized at 25 mM NaCl day-1 (approximately -1 bar osmotic potential) to final salt concentrations of 0, 50, and 100 mM. Plasmalemma and tonoplast vesicles were isolated from fresh root samples, and ATPase and Na+/H+ antiport activity was determined using fluorescence assays. The selected line restricted Na uptake into the shoot and maintained higher shoot K+ than did the wild parent. Growth rate under salinity was greater in the selected line than in the wild species, but relative salt tolerance was higher in the wild parent. Interspecific hybridization appears to be a useful process for the transfer of salt tolerance characters from wild to cultivated tomato.

Free access

Michael C. Shannon, Catherine M. Grieve, Scott M. Lesch, and John H. Draper

Saline agricultural drainage water may be used as a resource to grow high value horticultural crops and reduce the volume of drainage for eventual disposal. To explore reuse options the effects of salinity and timing of application were tested on selected leafy vegetables grown in 24 sand culture plots in Riverside, Calif. The leafy winter vegetables included `Ruby Red Chard' Swiss chard [Beta vulgaris L. var. flavescens (Lam.) Lam.], `Space' spinach (Spinacia oleracea L.), `Vitamin Green' salad greens [Brassica rapa L. (Narinosa Group)], `Red Giant' mustard greens [Brassica juncea L. (Czerniak)], pac choi [Brassica rapa L. (Chinensis Group)], `Winterbor' kale [Brassica oleracea L. (Acephala Group)], tatsoi [Brassica rapa L. (Narinosa Group)], `Salad King' curly endive (Cichorium endivia L.), and `Red Preco No. 1' radicchio (Cichorium intybus L.). All vegetables were planted at the same time and irrigated initially with tap water and nutrients. At 3 and 7 weeks after seeding (application times), six salinity treatments were initiated by adding salts to the irrigation water to represent the chemical compositions of drainage waters found typically in the San Joaquin Valley, Calif. The six salinity treatments had electrical conductivities of 3 (control), 7, 11, 15, 19, or 23 dS·m-1. A randomized complete block design was used with (6 salinities × 2 application times × 2 replications). Within each plot a 1.5-m row of each of the nine vegetables was grown as split plots. Salinity reduced fresh weight (FW) yields of all species. Salt stress applied at 3 weeks after seeding reduced FWs for seven of the nine vegetables compared to salination at 7 weeks. Analyses of salt tolerance curves, maximum yields, and the point of 50% yield reduction (C50) were conducted. Greens produced the highest biomass at 874 g/plant, but was the most affected by application time. Swiss chard and radicchio were not significantly affected by timing of salinity application, and Swiss chard was the most salt tolerant overall. Greens, kale, pac choi, and to a lesser extent, tatsoi, have potential as winter-grown, leafy vegetables in drainage water reuse systems.