Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Michael Bartholomew x
Clear All Modify Search
Free access

Michael Bartholomew and Mary M. Peet

Previous greenhouse studies in Raleigh have shown that nighttime cooling increases tomato fruit weights from 11% to 53%, depending on planting dates. The physiological mechanism was unclear, except that temperatures during fruitset were most critical We report here on a phytotron experiment comparing pollen characteristics and in vitro pollen germination of plants grown at night temperatures of 18, 22,24 or 26°C in a 12-hour photoperiod with 26°C day temperature in all treatments. There was considerable variability between sampling dates in pollen characteristics and % germination. The most consistent and significant effects were a decrease in total pollen and an increase in % abnormal pollen at high night temperatures. Number of seed present in the fruit also decreased with increasing night temperatures, indicating that the changes in pollen characteristics adversely affected seedset. Night temperatures of 22C appeared optimal for many of the pollen and growth characteristics measured, but fruit developed most rapidly at the higher night temperatures.

Free access

Mary M. Peet, Daniel H. Willits and Michael Bartholomew

Previous greenhouse studies in Raleigh have shown that nighttime cooling increases tomato fruit weights from 11% to 53%, depending on planting dates. The physiological mechanism was unclear, except that temperatures during fruitset were most critical. We report here on 3 experiments, 2 in greenhouses and 1 in the phytotron, comparing pollen characteristics of plants grown at differing night temperatures. In the greenhouse studies, nighttime temperatures were kept below 20°C for either the whole night or just the last half of the night. In the phytrotron studies night temperatures were 18, 22, 24 or 26°C, In both phytotron and greenhouse studies, there was considerable day-to-day variability in pollen characteristics and % germination. The most consistent effect in both types of studies was a decrease in total pollen and an increase in % abnormal pollen at high night temperatures. In the phytotron studies 20°C appeared optimal for both these characteristics.