Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Michael A. Creller x
Clear All Modify Search

Scanning electron microscopy (SEM) was used to compare the novel surface morphology of `Marina' peach [plant introduction (PI) 133984] to a normal peach (`Contender') and a nectarine (`Sunglo'). Samples were collected before, during, and after anthesis. Compared to `Contender', `Marina' showed different trichome structure, lower trichome density, and delayed initiation of trichomes on the gynoecium. No pubescence was observed on `Sunglo' nectarine at any sampling date. Trichomes were present on the flower bud scales of all three cultivars. Arrangement and structure of trichomes on flower bud scales of `Marina' differed from those on `Contender' and `Sunglo'.

Free access

Inheritance of the sweet kernel trait was studied in F1 and F2 families generated by crossing `Summer Beaut' nectarine (sweet kernel) with `Ellerbe' and `Biscoe' peach. F1 plants showed bitter kernel. Segregation in the F2 fit a 3 bitter : 1 sweet phenotypic ratio, suggesting that sweet kernel is controlled by a single recessive gene, for which the symbol sk is proposed. Sweet kernel (sk) was linked to nectarine (g) at a map distance of 12 cM. Seed bitterness phenotype is controlled by the genotype of the maternal tree and not the genotype of the individual embryo. Inheritance of male sterility derived from plant introduction (PI) 240928 and allelism of male sterile genes found in `Chinese Cling' and `White Glory' were investigated. Analysis of F1, F1 open-pollinated, and BC1 families derived from crossing PI 240928 with six different wild-type cultivars showed that male sterility in PI 240928 is controlled by cytoplasmic factors. Allelism studies showed that the male-sterile gene found in `White Glory' is not allelic to ps found in `Chinese Cling', and hence is designated ps2.

Free access

Surface morphology of peach [Prunus persica (L.) Batsch] Plant Introduction 133984 (`Marina') differs from standard peach and nectarine clones. Scanning electron microscopic examination of `Marina', a standard peach (`Contender'), and a nectarine (`Sunglo') was conducted. At anthesis, `Marina' ovaries were glabrous, similar to `sunglo' nectarine. Fruit of `Contender' were fully pubescent at anthesis. Examination of `Marina' fruit two weeks after anthesis revealed the presence of both pubescent and glabrous sectors on the fruit surface. At fruit maturity, most of the fruit surface of `Marina' was covered with pubescence, but trichome density was considerably less than `Contender' peach. Trichome morphology of `Marina' differed from that of `Contender'.

Free access

Inheritance of the blood-flesh (red-violet mesocarp) trait in peach [Prunus persica (L.) Batsch.] was investigated in S1, S2, F1, F2, F3, BC1P1, and BC1P2 families derived from `Harrow Blood', a clone showing anthocyanin accumulation in fruit about 45-50 days after anthesis. This trait invariably was associated with the red midrib leaf phenotype in `Harrow Blood', an S1 family from `Harrow Blood', and in green leaf F2 progeny derived from `Harrow Blood' × `Rutgers Red Leaf 2n'. A segregation ratio of about 3 blood-flesh : 1 wild-type was observed in the S1 family, but F1 progeny produced only wild-type fruit. Examination of F2 progeny segregating for the blood-flesh and red leaf traits revealed no evidence of epistasis. Based on segregation ratios in F1, F2, F3, BC1P1, and BC1P2 families from this cross, the F1 family from `Contender × (`Harrow Blood' × `Rutgers Red Leaf 2n'), and six additional F1 families from crosses between `Harrow Blood' and green leaf clones with wild-type fruit, we propose that blood-flesh is controlled by one gene, designated bf (blood-flesh). The blood-flesh phenotype was associated with reduced tree height in S1 and F2 progeny derived from `Harrow Blood'. Segregation for leaf blade color deviated significantly (P = 0.05) from the expected 3 red : 1 green ratio in six of the F2 families derived from selfing seven F1 trees from `Harrow Blood' × `Rutgers Red Leaf 2n'.

Free access

Inheritance of the blood flesh (red-violet mesocarp) trait in peach [Prunus persica (L.) Batsch] was investigated. `Harrow Blood' fruit began accumulation of anthocyanin about 40 days after anthesis. The blood-fleshed trait was associated with the red-veined leaf phenotype in `Harrow Blood' and its self progeny. An approximate segregation ratio of 3:1 (red vein:green vein) was observed in a population generated by selfing `Harrow Blood'. All 112 F1 progeny from a cross of `Harrow Blood' × `Rutgers Red Leaf'-2n produced wild-type fruit. Phenotypic segregation for red leaf:green leaf deviated from the expected 3:1 ratio in two of three F2 families derived from these F1's. More red leaf segregants were observed than expected. Bed-veined, green-leafed progeny comprised about 25% of the green-leafed seedlings in the F2. Examination of fruit on a limited number of F2 segregants revealed the presence of red-leafed, blood-fleshed individual. Preliminary results suggest that the blood trait may be controlled by two loci. The red-vein phenotype was associated with reduced tree height in self progeny of `Harrow Blood'.

Free access