Search Results
This study aimed to evaluate whether preharvest or postharvest application of glycine betaine (GB) has the potential to improve fruit quality [fruit firmness (FF), size, skin color, soluble solids content (SSC), and titratable acidity (TA)] and susceptibility to storage disorders (peduncle browning, pitting, and decay) in ‘Lapins’ or ‘Regina’ sweet cherries, and to determine whether factors such as application frequency or timing impacted the efficacy of GB spraying. Adding 2 or 4 g·L−1 GB to hydro-cooling water (0 °C) as postharvest treatment did not affect fruit size, skin color, SSC, TA, peduncle browning, or pitting development; however, it did result in fruit softening and a low incidence of decay. GB applied preharvest at 2 or 4 g·L−1 once at 1 week before harvest (1WBH) was more effective for retaining FF and less peduncle browning and pitting compared with postharvest treatment. Increasing the preharvest GB application frequency from one time (1WBH or pit hardening) to three times (pit hardening, straw color, and 1WBH) enhanced FF and TA levels and resulted in lower pitting. The reduction in fruit size was observed for ‘Regina’, but not for ‘Lapins’. Changes in the contents of phosphorous (P), potassium (K), and magnesium (Mg) were unaffected by GB at harvest, whereas three GB sprays increased the total nitrogen (N) content. Compared with ‘Lapins’, ‘Regina’ allowed more calcium (Ca) uptake by GB and ultimately had firmer flesh. In conclusion, three preharvest applications of 4 g·L−1 GB showed great potential to improve quality attributes, to reduce the susceptibility to storage disorders, and to increase the Ca content of ‘Regina’ cherries.
Areca (Areca catechu L.) is a tropical plant with great economic importance. In China, the fruit of areca (betel nut) is produced mainly in Hainan Province. However, the yield of betel nuts was impacted seriously by frequent water deficits in Hainan Province. Drought causes deleterious effects on the growth and development of areca plants, especially on young seedlings, which hampered the extensive planting of areca. In this study, a reagent of a superabsorbent polymer (SAP) was applied into the culture soil and we analyzed its function against drought stress when seedlings were grown under different irrigation levels. We observed that SAP application caused a significant increase in plant weight under severe drought, as well as in the maximum photochemical efficiency of PSII (Fv/Fm) and actual photochemical efficiency of PSII [Y(II)] index of chlorophyll (chl), indicating the photosynthetic efficiency of seedlings under severe drought (D) was enhanced by SAP. The antioxidant enzyme activity of areca seedlings under D was indicated to be enhanced by the increasing activity of superoxide dismutase (SOD) and peroxidase (POD), but not catalase (CAT). In addition, SAP even has slight negative effects on the growth of seedlings under adequate water. Our results provide a theoretical basis to improve the viability of areca seedlings under severe drought using SAP, which is urgently needed for the market.
Nitrogen (N) is an essential macronutrient limiting plant growth and quality of leaf-vegetable sweetpotato (Ipomoea batatas Lam). The objective of this study was to investigate the effects of N deficiency and re-supply on growth, physiology, and amino acids in sweetpotato. Two leaf-vegetable sweetpotato cultivars, Pushu 53 and Tainong 71, were subjected to three treatments in hydro-culture: 1) N sufficiency, 2) N deficiency, and 3) N deficiency and subsequently with N re-supply. Compared with N sufficiency, N deficiency caused a decrease in vine growth, carotenoid and chlorophyll content (Chlt), root viability, photosynthesis, and nitrate reductase (NR) activity in both cultivars, but to a great extent in Tainong 71. Whereas N deficiency increased root growth and glutamine synthetase (GS) activity in both cultivars, and the increase in ‘Tainong 71’ was more obvious. Re-supply of N recovered the vine growth, root viability, Chlt, photosynthesis, NR, and GS activity, to a greater extent for ‘Pushu 53’ than for ‘Tainong 71’. N deficiency significantly decreased essential amino acids, including lysine, phenylalanince, isoleucine, tryptophane, leucine, and valine contents and nonessential amino acids, consisting of glutamic acid, aspartic acid, glycine, argnine, and proline content in both cultivars. These results indicated that the light leaf color leafy sweetpotato ‘Tainong 71’ is sensitive to the N availability and the dark green leaf color ‘Pushu 53’ is more tolerant to low N, which appear to reflect the differential response of two cultivars to their different adaptability to N availability.
Lignin is one of the main components of plant cell walls, which provides mechanical support for plants and also contributes to resisting against plant pathogenic fungi. In the fruit industry, the lignin content can affect the quality of fruit. The biosynthesis of lignin involves a variety of enzymes, of which caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a class of methyltransferases that plays an essential role in lignin biosynthesis. Studies have been conducted on the CCoAOMT gene family in several species, including arabidopsis (Arabidopsis thaliana), black poplar (Populus nigra), and cotton (Gossypium hirsutum). Still, there is relatively little research on this gene family in the Rosaceae. In this study, we used bioinformatics to identify and characterize the CCoAOMT gene family in apple (Malus domestica), chinese white pear (Pyrus bretschneideri), and peach (Prunus persica). In total, 35 CCoAOMT genes were identified in the three Rosaceae species: 8 from chinese white pear, 12 from apple, and 15 from peach. By using structure analysis and collinearity analysis, we found 12 conserved motifs and 12 pairs of CCoAOMT genes with collinearity. In the phylogenetic tree, the gene family was mainly divided into two groups. The genes had different expression patterns during the growth and development stage of fruit, a finding that is consistent with the pattern of lignin accumulation. This study will be beneficial for further study of CCoAOMT genes.
Chinese cymbidiums are important flowering ornamental plants. Traditional propagation via seed or division cannot satisfy growers’ demand for commercialization of new cultivars, and in vitro propagation has a low micropropagation efficiency due to the browning of rhizomes. In this study, rhizomes of Cymbidium ‘14-16-13’ and ‘14-16-5’ were cultured on half-strength Murashige and Skoog (MS) medium supplemented with 6-benzyl aminopurine (BAP), NAA (α-napthaleneacetic acid), or BAP with NAA under either the dark or light. The degree of browning was read, and rhizome proliferation or sprouting (sprout numbers) was evaluated. Results showed that there was significant difference in browning grade of rhizomes between ‘14-16-13’ and ‘14-16-5’ regardless of dark and light culture. Dark culture induced rhizome proliferation but failed to induce sprouts. Light culture slightly elevated the degree of browning but induced sprouting. Among the growth regulators evaluated, BAP was more effective for sprout induction. As rhizome browning appeared to be inevitable in micropropagation of the cymbidiums, a compromise between browning and sprout production could be a realistic approach. Our study showed that rhizomes cultured on half-strength MS medium supplemented with 1.5 mg·L−1 BAP were able to produce more than 16 sprouts per vessel even though browning occurred in the rhizomes. Thus, culturing rhizomes in this medium could be a practical solution for in vitro propagation of Chinese cymbidiums.
Leaf mold, caused by the fungus Cladosporium fulvum, is a serious disease of tomato. In the current study, the main physiological races of C. fulvum collected from three northeastern provinces of China were identified using a set of identification hosts. The results showed that the prevalent pathogenic physiological races were 1.2.3, 1.3, 3, 1.2.3.4, and 1.2.4. F1, F2, and BC1 tomato plants were obtained by crossing C. fulvum-resistant cultivar 03748 carrying the Cf-6 gene and susceptible cultivar 03036. Three 10-mer oligonucleotide random amplified polymorphic DNA (RAPD) primers and two simple sequence repeat (SSR) primers were selected for the further molecular marking analysis after 210 RAPD primers and 50 SSR primers were screened using the bulked segregate analysis method. The polymorphic DNA bands were amplified among parents, 10 F1 plants, 184 F2 plants including 145 resistant plants and 39 sensitive plants using three RAPD primers and two SSR primers so that three RAPD molecular markers and two SSR molecular markers linked to the Cf-6 loci were identified. Three RAPD markers were linked to the Cf-6 resistant locus separated with 8.7 cM, 20.3 cM, and 33.4 cM. Also, one RAPD codominant marker S374619/559 was found. The locations of the two SSR markers were 12.6 cM and 9.7 cM away from the Cf-6 locus. After cloning and sequencing two specific DNA fragments closely connected to the Cf-6 resistant and susceptible alleles respectively, in the RAPD codominant marker S374619/559 and one codominant sequence characterized amplified region marker S674619/559 was converted from RAPD marker S374619/559. In the RAPD marker S374619/559, the length difference of two specific fragments, 619-bp fragment and 559-bp fragment, is the result of one insertion (60 bp) in the 619-bp fragment. These markers will facilitate the selection of resistant tomato germplasm containing the Cf-6 gene and cloning of Cf-6 to breed new C. fulvum resistant tomato cultivars.
To analyze the evolutionary level of Prunus mira Koehne (Prunus mira Koehne Kov et. Kpst), 15 kinds of pollen grains from five altitudes were observed using a scanning electron microscope (SEM). This study demonstrates that pollen morphous P. mira has high variation; specifically, individuals from higher altitudes are much more evolved than those from lower altitudes. This is the first time the pollen morphology of P. mira has been systematically illustrated. Furthermore, 12 random amplified polymorphic DNA (RAPD) primers generated clear and repeatable bands among all individuals based on RAPD; 107 bands ranging from 200 bp to 2000 bp were generated with an average of 8.92 bands per primer. Thus, the RAPD technique proved to be a powerful tool to reveal variation on P. mira. This study provides comprehensive information for genetic diversity of P. mira from different altitudes.
Sword-leaf dogbane (Apocynum venetum) is a traditional Chinese herb with increasingly recognized potential to enhance health, but no study of stable reference genes in this herb has been reported. Based on a homologous cloning strategy, we have successfully cloned five candidate reference genes from sword-leaf dogbane: glyceraldehyde-3-phosphate dehydrogenase (AvGAPDH), beta tubulin (AvbTUB), polyubiquitin (AvUBQ), elongation factor 1-alpha (AvEF1α), and actin (AvACTIN). Three distinct algorithms, geNorm, NormFinder, and BestKeeper, were used to estimate the expression stability of candidate reference primer pairs. We found that AvACTIN-2 and AvACTIN-3 presented the highest stability of expression in different tissue samples, and AvGAPDH-2 was most stable under salinity stress. In addition, we illustrated the application of these new reference genes by assaying the expression levels of two hyperoside biosynthesis terminal enzyme genes, flavonoid 3′-hydroxylase (F3′H) and flavonol synthase (FLS), under salinity stress. Our study is the first to report stable expression of internal reference genes in sword-leaf dogbane in multiple experimental sample sets.
Traditional methods of garlic fertilization involve large amounts of balanced fertilizer with equal proportions of N, P, and K, leading to nutrient imbalances, reduced yield and nutritional quality, and elevated risk of environmental pollution. This study for the first time measured garlic nutrient absorption and mineral elements status in garlic fields. In addition, a garlic-specific fertilizer formula and recommended rate were designed and applied in multiple garlic fields during the 2019–21 growing season. We assessed the performance of garlic-specific fertilizer in terms of yield, quality, and nutrient utilization efficiency. We showed that garlic prefers to absorb N and K, and its absorption of P was much lower. Deficiencies in Cl, Mn, S, and Fe are found in 98.7%, 56.1%, 22.8%, and 11.9% of garlic fields. Compared with farmer fertilization, the garlic-specific fertilizers increased sprout yield by 12.9% to 30.5%, bulb yield by 11.0% to 33.5%, and net income by 18.2% to 45.6%. Furthermore, it improved the nutritional quality [vitamin C (Vc), soluble sugar (SS), and soluble protein] of the garlic and reduced the accumulation of nitrate. The formula of special fertilizer was more in line with the law of garlic nutrient absorption, increasing the nutrient utilization effect, reducing the environmental risks. Application of specific fertilizer increased N, P, and K partial productivity by 26.6% to 50.1%, 82.6% to 116.5%, and 54.6% to 83.3%, respectively. These results suggest that replacing balanced fertilizers in the garlic market with garlic-specific fertilizers can improve garlic farmers' incomes and soil health.