Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Maude Lachapelle x
  • All content x
Clear All Modify Search
Free access

Maude Lachapelle, Gaétan Bourgeois, and Jennifer R. DeEll

Apple fruit firmness is one of the main attributes indicating fruit quality at harvest. It is affected by numerous factors during the entire growing season. The effects of weather conditions during apple development are often mentioned as a result of their impact on attributes linked to fruit firmness: fruit size, calcium concentration, water content, etc. In this study, the effects of weather conditions on ‘McIntosh’ apple (Malus ×domestica Borkh. cv. McIntosh) firmness at harvest time were analyzed. Fruit were harvested at nine sites in Quebec and Ontario over 15 years (1996–2011). For each case, weather parameters were analyzed from full bloom until harvest, either in monthly subperiods from May until September or in terms of days from full bloom (DFB) until harvest. Regression results highlighted the negative effect of lower air temperature conditions from 31 to 60 DFB, higher air temperature conditions and precipitations from 61 to 90 DFB, and higher temperature conditions from 91 DFB until harvest on ‘McIntosh’ apple firmness level at harvest. Precipitation from 61 to 90 DFB alone explained 39% of ‘McIntosh’ apple firmness variation at harvest time. The prediction of apple firmness at harvest time could be helpful for producers to adjust their marketing and storage strategies according to apple quality level.

Free access

Maude Lachapelle, Gaétan Bourgeois, Jennifer R. DeEll, Katrine A. Stewart, and Philippe Séguin

‘Honeycrisp’ is a relatively new apple cultivar highly susceptible to physiological disorders, such as soggy breakdown. The overall objective of this study was to identify preharvest weather parameters that influence the incidence of soggy breakdown over the different phases of fruit development. Using weather data and evaluation of fruit quality from three sites in Ontario, two sites in Quebec, and one site in Nova Scotia from 2009 to 2011, and data from four sites in Ontario from 2002 to 2006, a model for soggy breakdown incidence (SBI) was developed to predict the level of susceptibility in ‘Honeycrisp’ apples. This model uses primarily two weather variables during the last phase of fruit development [91 days from full bloom (DFB) to harvest] to accumulate an SBI index during the growing season, from full bloom to harvest. Cool (temperature <5 °C) and wet conditions (precipitation >0.5 mm) during this last phase resulted in increased soggy breakdown susceptibility levels. The predictions of the SBI model resulted in 68% of well-estimated cases (threshold of ±5%) (RMSE = 6.45, EF = 0.28, E = −0.04). Furthermore, firmness was linked to soggy breakdown, in addition to weather conditions, revealing a positive effect of high firmness at harvest on the development of the disorder. However, the effect of fruit quality attributes (e.g., internal ethylene concentration, starch index, firmness, and soluble solid content) by themselves, without considering weather conditions, revealed no relationship with the incidence of soggy breakdown.