Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Matthew W. Kent x
Clear All Modify Search
Free access

Matthew W. Kent and David W. Reed

The effects of cations vs. anions in salinity studies cannot be separated by traditional means. Analysis of mixture experiments allows ionic ef-fects to be analyzed individually by varying proportions of ions without changing their total concentrations. A series of mixture experiments were performed in the greenhouse to determine the effects of the anions bicarbonate, chloride, and sulfate, given a constant and equal concentration of the cation sodium, on vinca `Pacifica Red' grown with different irrigation systems and leaching fractions. In subirrigation, increasing total ion concentrations from 30 to 60 meq/L total ion concentrations (TIC) caused a general decrease in shoot fresh and dry weights, with bicarbonate contributing to the greatest degree of reduction, and sulfate the least. Root dry weight was similarly decreased with increasing TIC, but the differences between individual ion effects were more subtle. SPAD data, an indication of chlorophyll concentration, showed a sharp decrease with increase in bicarbonate, but not with sulfate or chloride. Medium pH increased as TIC increased, being influenced primarily by bicarbonate. Conversely, growing medium EC was influenced most by sulfate and chloride, and least by bicarbonate with increasing TIC. At 30 meq/L TIC, top-watered treatments with a leaching fraction (LF) of 5% generally had reduced shoot and root dry weight without regard to ion species, while a leaching fraction of 35% produced results more similar to those of subirrigation. While medium EC and pH varied with layer and irrigation method, bicarbonate generally affected EC least and pH most.

Free access

Matthew W. Kent and David Wm. Reed

Greenhouse cultural methods must change rapidly to minimize runoff and to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8-mM N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked around 10 mM N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. Soluble salts remained low in middle and bottom layers at N concentrations below 10 mM, but increased significantly for all soil layers at levels above 10 mM. The top layer contained two to five times higher soluble salt levels than in the middle or bottom layers at all N levels. Increased nitrate concentration mimicked increases in soluble salts, while pH decreased as N concentration increased for both impatiens and peace lily.

Free access

Matthew W. Kent and David Wm. Reed

Greenhouse cultural methods must minimize runoff to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8 mm N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked at about 10 mm N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. EC remained low in middle and bottom layers at N concentrations below 10 mm, but increased significantly for all layers at levels above 10 mm. The EC for the top layer was 2 to 5 times higher than in the middle or bottom layers at all N levels. Increased nitrate concentration paralleled increased EC, while pH decreased as N concentration increased for impatiens and peace lily.

Free access

Carrie L. Whitcher, Matthew W. Kent and David Wm. Reed

The objective of this study was to quantify the optimum rates of water-soluble phosphorus (P) under constant nitrogen and potassium on the growth of new guinea impatiens (Impatiens hawkeri Bull.) `Paradise Violet' and vinca Catharanthus roseus `Pacifica Red' in soilless media in a recirculating subirrigation system. The experiment was designed so that only phosphate varied between treatments while all other nutrients remained constant. The ammoniacal N to nitrate N ratio was varied to counter balance increases in phosphate. Sodium was used as a counter ion to phosphate at higher concentrations of phosphate; sodium proved to be toxic at concentrations above 6 mm. In the new guinea impatiens experiment, there was a small increase in K due to the use of dibasic K phosphate to buffer pH. All growth parameters measured (height, leaf number, flower number, and shoot fresh and dry weight) showed significant differences with increasing P rate. Depending on the growth parameter measured, quadratic–linear models revealed an optimum P rate of 0.1 to 0.96 mm for new guinea impatiens `Paradise Violet' and 0.45 to 1.25 mm P for vinca `Pacifica Red'. For dry shoot weight, a common measure of optimum plant growth, the optimum P rate was 0.75 mm P for new guinea impatiens `Paradise Violet' and 0.67 mm P for vinca `Pacifica Red'. For flower number, a common measure of floral quality, the optimal P rate was 0.96 mm P for new guinea impatiens `Paradise Violet' and 1.25 mm P for vinca `Pacifica Red'. Electrical conductivity (EC) of the growing media increased significantly with increasing rate of P. At all rates, EC was significantly greater in the top layer than in the bottom and middle layers. The pH of the growing medium did not vary in relation to P concentration.

Free access

Traci Armstrong, Matthew W. Kent and David Wm. Reed

With the rising concern for the environment and an increase in governmental regulation, greenhouse growers must find alternative methods for irrigation that will avoid ground and surface water contamination. Subirrigation is one of these alternatives, but subirrigation is more sensitive to water quality than traditional systems and many growers are faced with poor water quality. This experiment tested seven different water sources from across the state of Texas. Each source was replicated twice using New Guinea impatiens `Illusion'. Leaf count, plant height, and plant width were measured at 2-week intervals. Plants were harvested at 8 weeks and measured for shoot fresh weight, shoot dry weight, and overall quality. Electrical conductivity of the upper, middle, and bottom layers of the container medium was measured. Compared to the reverse osmosis control, fresh weight was reduced by 12% to 30%, average leaf number by –7% to 56%, quality evaluation by –8% to 61%, average width by –5% to 27%, and the average height by 8% to 34%. The results will be explained based on differences in analysis of the various water and media samples.