Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Matthew J. Morra x
Brassicaceae seed meals (BSMs) average 6% nitrogen (N) by weight and contain glucosinolates (GLSs) that produce biologically active compounds. A two-season field study was initiated to determine how Brassica juncea L., Brassica napus L., and Sinapis alba L. seed meals, each with different glucosinolate profiles, alter carrot (Daucus carota L. subsp. sativus) growth, microbial biomass N (MBN), and soil N mineralization. BSM applications of 1 and 2 t·ha−1 36 days before planting did not influence carrot emergence, whereas carrot emergence decreased up to 40% in S. alba treatments seeded 15 days after BSM application. Crop quality was unaffected by BSM treatments and total fresh market yields were equal to or higher than the unamended controls in both years. At 4 and 8 days after seed meal application, MBN in the high-GLS B. juncea and S. alba treatments was 48% to 67% lower than in the low-GLS B. napus treatment. Seasonal apparent net N mineralized expressed as a percentage of the total N applied in the seed meals was unaffected by glucosinolate concentration and ranged from 30% to 81% across both years. BSMs can be used to increase soil inorganic N and carrot yields, but crop phytotoxicity is possible depending on the meal and its respective glucosinolate content. GLS degradation products inhibit microbial N uptake in the short term, but longer-term N availability is not compromised.
Mustard seed meals of indian mustard [InM (Brassica juncea)] and yellow mustard [YeM (Sinapis alba)], alone and combined, were tested for effects on tomato (Solanum lycopersicum) plants and for suppression of southern root-knot nematode [RKN (Meloidogyne incognita)] and weed populations. In the greenhouse, with all seed meal treatments applied at 0.25% total w/w soil, low tomato plant stands (up to 60% dying/dead) resulted from amendment with 3 YeM:1 InM, 1 YeM:1 InM, and YeM, applied right before transplant. Compared with untreated controls, low numbers of RKN eggs per gram root were consistently recorded from amendment with 3 YeM:1 InM. In a 2012 field study, incorporation of 1 YeM:1 InM (1700 lb/acre) resulted in lower tomato root biomass than fertilizer application (504 lb/acre), YeM or InM (each 1700 lb/acre). All treatments were applied with added fertilizer to achieve 100–102 lb/acre nitrogen, 7.4 lb/acre phosphorus, 74.7 lb/acre potassium, 6.0 lb/acre sulfur, and 1.0 lb/acre boron. The lowest numbers of RKN eggs per gram root (harvest 2012) were collected from plots amended with InM (1700 lb/acre), YeM (850 lb/acre), and 3 YeM:1 InM (1700 lb/acre), but the numbers were not significantly different from fertilizer only (504 lb/acre) controls. Highest and lowest tomato yields (numbers of fruit) in 2012 were recorded from YeM (850 lb/acre) and 3 YeM:1 InM (1700 lb/acre) amendments, respectively. In 2013, there were no significant differences among treatments in eggs per gram root or in tomato yields. No mustard seed meal treatment affected weed populations. At the tested rates, YeM seed meal showed potential for use in tomato beds but results were inconsistent between years.