Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Matthew Cutulle x
Clear All Modify Search
Restricted access

Matthew A. Cutulle, Howard F. Harrison Jr., Chandresakar S. Kousik, Phillip A. Wadl and Amnon Levi

A greenhouse trial was used to evaluate 159 accessions of bottle gourd [Lagenaria siceraria (Mol.) Standl.] obtained from the U.S. National Plant Germplasm for tolerance to clomazone herbicide. Most accessions tested were moderately or severely injured by clomazone at 3.0 mg·kg−1 incorporated into greenhouse potting medium; however, several exhibited lower injury. Seeds were produced from tolerant and susceptible plants for use in a greenhouse concentration–response experiment. About three to four times higher clomazone concentrations were required to cause moderate injury to tolerant bottle genotypes in comparison with susceptible genotypes. The differences in tolerance among genotypes were observed with injury ratings, chlorophyll measurements, and shoot weights. Clomazone may be used safely on tolerant bottle gourd genotypes, but the herbicide may not be safe for susceptible genotypes. Also, tolerant genotypes such as Grif 11942 may be desirable for use as rootstocks in grafted watermelon production.

Free access

Matthew A. Cutulle, Jeffrey F. Derr, David McCall, Brandon Horvath and Adam D. Nichols

Tall fescue (Festuca arundinacea) and hybrid bluegrass (Poa pratensis L. × Poa arachnifera) can both be successfully grown in the transition zone of the United States. However, each grass has limitations. Tall fescue is susceptible to the fungal pathogen Rhizoctonia solani, whereas slow establishment and susceptibility to weed infestations limit hybrid bluegrass. Previous studies have shown the benefits of combining kentucky bluegrass with tall fescue in seeding mixtures. Research was conducted to evaluate the impact of two seeding combinations of hybrid bluegrass and tall fescue (one combination seeded at a 1.9:1 seed count ratio favoring tall fescue, the other combination seeded at a 1:1.8 seed count ratio favoring hybrid bluegrass) as well as monocultures of the species on turfgrass cover, weed species infestation, brown patch disease severity caused by R. solani, sod strength and species ecology. The seeding combinations had lower weed density during establishment and greater turf cover than the monoculture of hybrid bluegrass. The monoculture of tall fescue was subjected to more brown patch disease than the seeding combinations during and after the first year of establishment. Brown patch infestations likely reduced tall fescue cover and led to a species shift favoring hybrid bluegrass in the seeding combinations based on tiller count and weight data. Seeding combinations of tall fescue and hybrid bluegrass are beneficial from an epidemiological perspective because they reduce disease and weed infestations compared with monocultures of either species. From an agronomic perspective, the seeding combination favoring tall fescue provided the densest turf, whereas the seeding combination favoring hybrid had the greatest sod strength. Chemical name used: clopyralid (3,6 dichloropyridine-2 carboxylic acid)

Restricted access

Robert Andrew Kerr, Lambert B. McCarty, Matthew Cutulle, William Bridges and Christopher Saski

Goosegrass (Eleusine indica L. Gaertn.) is a problematic C4 weedy grass species, occurring in the warmer regions of the world where it is difficult to selectively control without injuring the turfgrass. Furthermore, control efficacy is affected by plant maturity. End-user options for satisfactory goosegrass control has decreased; thus, the need for developing management techniques to improve the selectivity of POST goosegrass control options in turfgrass systems is ever increasing. One possible means of providing control, yet maintaining turf quality is immediately incorporating applied products via irrigation. Greenhouse and field trials were conducted in Pickens County, SC, with the objectives of 1) evaluating turfgrass injury following use of POST goosegrass control options; 2) assessing if irrigating (0.6 cm) immediately following the herbicide application reduces injury of ‘Tifway 419’ bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt-Davy]; and 3) determining if immediate irrigation influences goosegrass control at one- to three-tiller and mature growth stage. Following the application of herbicide treatments, irrigation was applied (+) or not applied (−). Treatments included the following: control (+/− irrigation); topramezone at 12.3 g a.i./ha (+/− irrigation); metribuzin at 420 g a.i./ha (+/− irrigation); and topramezone plus metribuzin (+/− irrigation) at 12.3 and 420 g a.i./ha. Irrigation treatment had minimum effect on greenhouse-grown goosegrass biomass, all treatments provided >85% control of 1- to 3-tiller goosegrass plants. However, control for mature plants was <50% for topramezone- and 60% to 70% for metribuzin-containing treatments. In field studies, at 1 week after treatment (WAT), the irrigated metribuzin and topramezone plus metribuzin had ≈37% and ≈16%, respectively, less goosegrass control vs. nonirrigated treatments. At 2WAT, irrigated metribuzin and irrigated topramezone plus metribuzin–treated plots, had ≈50% less mature goosegrass control vs. nonirrigated treatments. Irrigated herbicide treatments, however, experienced ≈23% less turfgrass injury at this time. At 4 WAT, irrigated metribuzin- and irrigated topramezone plus metribuzin–treated plots experienced reduced mature goosegrass control by ≈65% and ≈59%, respectively. Overall, incorporating POST herbicide applications via 0.6 cm of irrigation reduced turfgrass injury by at least 20% for all herbicide treatments, while maintaining goosegrass control.

Full access

Matthew A. Cutulle, Gregory R. Armel, James T. Brosnan, Dean A. Kopsell, William E. Klingeman, Phillip C. Flanagan, Gregory K. Breeden, Jose J. Vargas, Rebecca Koepke-Hill and Mark A. Halcomb

Selective weed control in ornamental plant production can be difficult as many herbicides can cause unacceptable injury. Research was conducted to evaluate the tolerance of several ornamental species to applications of p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides for the control of problematic weeds in ornamental production. Mestotrione (0.09, 0.18, and 0.36 lb/acre), tembotrione (0.08, 0.16, and 0.32 lb/acre), and topramezone (0.016, 0.032, and 0.064 lb/acre) were applied alone postemergence (POST) in comparison with the photosystem II-inhibiting herbicide, bentazon (0.5 lb/acre). All herbicide treatments, with the exception of the two highest rates of tembotrione, caused less than 8% injury to ‘Noble Upright’ japanese holly (Ilex crenata) and ‘Compactus’ burning bush (Euonymus alatus). Similarly, no herbicide treatment caused greater than 12% injury to ‘Girard’s Rose’ azalea (Azalea). Conversely, all herbicides injured flowering dogwood (Cornus florida) 10% to 23%. Mesotrione- and tembotrione-injured ‘Radrazz’ rose (Rosa) 18% to 55%, compared with only 5% to 18% with topramezone. ‘Siloam June Bug’ daylily (Hemerocallis) injury with topramezone and tembotrione was less than 10%. Topramezone was the only herbicide evaluated that provided at least 93% control of redroot pigweed (Amaranthus retroflexus) with all application rates by 4 weeks after treatment (WAT). Redroot pigweed was controlled 67% to 100% with mesotrione and tembotrione by 4 WAT, but this activity was variable among application rates. Spotted spurge (Chamaesyce maculata) was only adequately controlled by mesotrione applications at 0.18 and 0.36 lb/acre, whereas chamberbitter (Phyllanthus urinaria) was not controlled sufficiently with any herbicide evaluated in these studies. Yellow nutsedge (Cyperus esculentus) was suppressed 72% to 87% with mesotrione applications at 0.18 lb/acre or higher and with bentazon at 0.5 lb/acre by 4 WAT. All other herbicide treatments provided less than 58% control of yellow nutsedge. In the second study, ‘Patriot’ hosta (Hosta), ‘Green Sheen’ pachysandra (Pachysandra terminalis), autumn fern (Dryopteris erythrosora), ‘Little Princess’ spirea (Spiraea japonica), ‘Green Giant’ arborvitae (Thuja plicata), and ‘Rosea’ weigela (Weigela florida) displayed no response to topramezone when applied at 0.024 and 0.095 lb/acre. Since 10 ornamental species in our studies exhibited less than 10% herbicidal response with all rates of at least one HPPD-inhibiting herbicide then it is possible that these herbicides may provide selective POST weed control in ornamental production systems.