Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mateus S. Pasa x
Clear All Modify Search

Prohexadione-calcium (P-Ca) was applied to ‘Anjou’ pear (Pyrus communis L.) trees in the lower and upper Hood River Valley (HRV), Oregon, to determine its effectiveness for managing the excessive vigor of ‘Anjou’ under different growing climates. Vegetative growth and development (weekly shoot growth rate, total annual extension growth, number of initiated shoots, internodal length, and number of nodes), yield (fruit number and fruit size), and return bloom dynamics were evaluated between 2010 and 2013. P-Ca consistently reduced shoot elongation by ≈40% in all years and at both sites when doses of 250 ppm were applied in early spring (i.e., ≈5 cm of annual shoot extension) compared with untreated trees. Shorter shoots were the result of both reduced internodal growth and fewer nodes. In the cooler, upper HRV, a single P-Ca application controlled shoot elongation for the entire season, but in the warmer, lower HRV, a second flush of growth was generally observed ≈60 days after the first application. A subsequent P-Ca application (250 ppm) provided added growth control in some instances. Yield was unaffected by P-Ca the season of application; however, in one year, an increase in fruit number indirectly led to reduced fruit size; otherwise, fruit size was unaffected by P-Ca. Postharvest fruit quality was not influenced substantially by P-Ca. Return bloom, however, was consistently reduced by P-Ca. Return yield, the year after P-Ca application (recorded in 2013 only), was reduced in proportion to the decrease in return bloom relative to untreated trees. In 2012, ethephon was also evaluated, alone or in combination with P-Ca. When applied on its own either once (150 ppm, 5-cm growth), or twice [150 ppm, 5-cm growth; 300 ppm, 57 days after full bloom (DAFB)], ethephon did not affect vegetative growth or yield components but did improve return bloom and return yield relative to other treatments; however, when combined with P-Ca, ethephon did not reverse reductions in return bloom or return yield induced by P-Ca. The most effective ethephon treatment for promoting flowering and return yield (300 ppm, 57 DAFB) was not tested in combination with P-Ca. We conclude that P-Ca is an effective tool for controlling vigor of ‘Anjou’ trees, but the decrease in return bloom requires additional investigation. Further work testing combinations of ethephon and P-Ca are warranted to optimize growth and productivity of ‘Anjou’ trees.

Free access

Postbloom thinning of ‘Bartlett’ pears (Pyrus communis L.) is required to produce fruit of commercially acceptable size. In the Pacific Northwestern United States, low temperatures during early stages of pear fruitlet development often limit the efficacy of commercial thinning compounds. Hand thinning, therefore, remains the standard crop load management practice. Chemical thinning protocols are necessary to reduce the cost and dependence on hand labor. The plant hormone abscisic acid (ABA) was evaluated over multiple years in several ‘Bartlett’ pear orchards. ABA was applied to whole canopies at variable rates (50–500 ppm) when fruit diameter was generally between 10 and 12 mm. In three of four trials, ABA thinned in a dose-dependent manner. The relative degree of thinning for a given dose, however, was inconsistent among trials. Trees treated with ABA had a higher proportion of blank and single-fruited spurs than the control. Net photosynthesis (P n) of single leaves was reduced 75% to 90% within one day of ABA application but gradually returned to ≈80% of control levels within 7 days and fully recovered by ≈14 days. Slightly greater and longer lasting P n inhibition occurred with increasing ABA dose. Fruit weight and return bloom generally increased with increasing ABA rate. Fruit quality, when measured, was unaffected by ABA treatments. Inconsistent thinning response with ABA may be attributed to environmental factors, biological factors, or both.

Free access