Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Massimo Iorizzo x
Clear All Modify Search

Informed assessment of priority genetic traits in plant breeding programs is important to improve the efficiency of developing cultivars suited to current climate and industry needs. The efficiency of genetic improvement is critical for perennial crops such as cranberries, as they usually involve more resources, time, and funding compared with other crops. This study investigated the relative importance of cranberry producers’ preferences for breeding traits related to fruit quality, productivity, plant physiology, and resistance to biotic and abiotic stresses. Industry responses revealed that fruit characteristics affecting fruit quality, including firmness, fruit size and anthocyanin content, and resistance to fruit rot, were the most desired traits in new cranberry cultivar release. These traits have the potential to increase the quality standards needed to process high-value sweetened dried cranberry products, positively affecting price premiums received by producers, which is critical for the economic viability of the cranberry industry. Our findings will be useful to breeders and allied scientists seeking to develop an advanced DNA-based selection strategy that would impact the global cranberry industry.

Open Access

Understanding consumers’ preferences for fruit quality attributes is key to informing breeding efforts, meeting consumer preferences, and promoting increased market demand. The objective of this study was to assess the effect of fruit quality traits and hedonic sensory evaluation on consumers’ willingness to pay (WTP) for a selection of fresh northern and southern highbush blueberry cultivars. The WTP was elicited by using a double-bounded contingent valuation conducted in conjunction with a consumer sensory test. Two types of models were estimated using either sensory evaluations (i.e., consumer preference and consumer intensity) or instrumental measurement data (i.e., measures of soluble solids, titratable acidity, sugars, acids, and firmness) as explanatory variables to model WTP. Results using sensory evaluations indicated that flavor liking, flavor intensity, and sweetness intensity are key factors that influence consumers’ acceptance and WTP for blueberries. A regression analysis using instrumental measurements indicated that measures related to sweetness and acidity traits are important factors that determine WTP. Higher WTP was associated with higher total sugar content across different levels of total organic acid. The WTP increases with organic acid content, because this is needed for enhanced flavor; however, WTP declines at high concentrations of organic acid. Except for extreme values of firmness, the WTP increased as measures of fruit firmness increased, indicating a consumer preference for firmer blueberries. Overall, the results provided new insights into the relationships between consumer preference and WTP and fruit quality benchmarks to select for improved quality.

Open Access

Developing new blueberry cultivars requires plant breeders to be aware of current and emerging needs throughout the supply chain, from producer to consumer. Because breeding perennial crop plants (such as blueberry) is time- and resource-intensive, understanding and targeting priority traits is critical to enhancing the efficiency of breeding programs. This study assesses blueberry industry breeding priorities for fruit and plant quality traits based on a survey conducted at commodity group meetings across nine U.S. states and in British Columbia (Canada) between Nov. 2016 and Mar. 2017. In general, industry responses signaled that the most important trait cluster was fruit quality including the firmness, flavor, and shelf life. Fruit quality traits affect price premiums received by producers; influence consumer’s preferences; and have the potential to increase the feasibility of mechanical harvesting, all critical to the economic viability of the industry. There were differences across regions in the relative importance assigned to traits for disease resistance, arthropod resistance, and tolerance to abiotic stresses. Our findings will be useful to researchers seeking solutions for challenges to the North American blueberry industry including development of new cultivars with improved traits using accelerated DNA-based selection strategies.

Open Access

Breeding programs around the world continually collect data on large numbers of individuals. To be able to combine data collected across regions, years, and experiments, research communities develop standard operating procedures for data collection and measurement. One such method is a crop ontology, or a standardized vocabulary for collecting data on commonly measured traits. The ontology is also computer readable to facilitate the use of data management systems such as databases. Blueberry breeders and researchers across the United States have come together to develop the first standardized crop ontology in blueberry (Vaccinium spp.). We provide an overview and report on the construction of the first blueberry crop ontology and the 178 traits and methods included within. Researchers of Vaccinium species—such as other blueberry species, cranberry, lingonberry, and bilberry—can use the described crop ontology to collect phenotypic data of greater quality and consistency, interoperability, and computer readability. Crop ontologies, as a shared data language, benefit the entire worldwide research community by enabling collaborative meta-analyses that can be used with genomic data for quantitative trait loci, genome-wide association studies, and genomic selection analysis.

Open Access