Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Masato Wada x
Clear All Modify Search

Two apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] homologous fragments of FLO/LFY and SQUA/AP1 (AFL and MdAP1, respectively) were analyzed to determine the relationship between floral bud formation and floral gene expression in `Jonathan' apple. The AFL gene was expressed in reproductive and vegetative organs. By contrast, the MdAP1 gene, identified as MdMADS5, which is classified into the AP1 group, was expressed specifically in sepals concurrent with sepal formation. Based on these results, AFL may be involved in floral induction to a greater degree than MdAP1 since AFL transcription increased ≈2 months earlier than MdAP1. Characterization of AFL and MdAP1 should advance the understanding of the processes of floral initiation and flower development in woody plants, especially in fruit trees like apple.

Free access

Changes of endogenous 9, 10-ketol-octadecadienoic acid (KODA) concentrations, which is synthesized from linolenic acid by 9-lipoxygenase, were analyzed in apple [Malus ×sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] buds. In addition, the effects of 15, 16-chloro, hydroxy-9-hydroxy-10-oxo-12(Z)-octadecenoic acid (CKODA) application, which is an analog of KODA, on flower bud formation and the expression of MdTFL1 (terminal flower 1) and MdFT1 (flowering locus t 1) genes in apple buds were investigated in heavy-crop treatment (HCT) and under shade. An increase of endogenous KODA in the buds in the fruit-thinning treatment, which resulted in a higher proportion of flower bud formation than in HCT, was observed at 63 days after full bloom, but no such increase was found in HCT. In the shade-treated and heavy-crop trees, the expression of MdTFL1 in the buds to which CKODA was applied was lower than that in untreated buds. In contrast, under shade, the expression of MdFT1 in the CKODA-treated buds was higher than that in untreated buds. These results suggest that endogenous KODA may be associated with flower bud formation, and its application may be effective at improving the proportion of flower bud formation through its effect on MdTFL1 and MdFT1.

Free access

The objective of this study was to investigate the effects of temperature treatments on anthocyanin accumulation and ethylene production in the fruit of early- and medium-maturing cultivars that were harvested early during fruit ripening. We first investigated the effects of various temperature treatments on anthocyanin accumulation in detached apples of ‘Tsugaru’, ‘Tsugaru Hime’, ‘Akane’ and ‘Akibae’ using an incubator. Three years of experiments demonstrated that at harvest, the lower-temperature treatments induced anthocyanin accumulation in ‘Tsugaru’, ‘Tsugaru Hime’, and ‘Akibae’ fruits, whereas the increases in anthocyanin accumulation under the 25 °C treatment were similar to those under the 15 and 20 °C treatments in ‘Akane’ fruit. The rate of ethylene production did not increase substantially during the temperature treatments in any of the four cultivars, except after the treatments of ‘Tsugaru’ fruit at harvest. The inhibition of ethylene action by the application of 1-methylcyclopropene (1-MCP) to detached fruits at harvest suppressed anthocyanin development under 15 and 20 °C temperature treatments in ‘Tsugaru’, ‘Tsugaru Hime’, and ‘Akibae’, but not in ‘Akane’. In the second experiment, we investigated changes in the anthocyanin concentration in attached fruit of ‘Misuzu Tsugaru’ under different temperature conditions in a greenhouse. At harvest, the anthocyanin concentration in fruit under the hotter climatic condition (29 °C 12 hours/19 °C 12 hours) was lower than that under the control condition (25 °C 12 hours/15 °C 12 hours). During the last week before harvest, anthocyanin development proceeded rapidly in fruit skin not only under the control condition, but also under the hotter climatic condition. The rapid accumulation of anthocyanin in the fruit skin of ‘Misuzu Tsugaru’ at harvest under a relatively high temperature (25 °C) condition was confirmed by the experiment using an incubator. At harvest, the maximum level of ethylene production in fruits sampled from trees grown under the hotter climatic condition was 9-fold higher than that in fruits from trees grown under the control condition. These results indicate that the comparison of pigmentation potential after the 15 or 25 °C treatments using detached fruit was effective for estimating anthocyanin accumulation in fruit skins under hotter climatic conditions in early- and medium-maturing cultivars that were harvested early and that a hotter climatic condition during ripening increased ethylene production in apple fruit after harvest.

Free access