Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Mary A. Rogers x
Clear All Modify Search
Full access

Mary A. Rogers

Organic vegetables produced in greenhouses and other controlled environments may fill a unique market niche as consumers demand local, high vegetables year round. However, limited technical information supports these production systems and more research is needed to provide recommendations for appropriate substrate mixes and nutrient management. Compost can be used as a substitute for peat-based media, and research results vary widely based on feedstock, compost method, and proportion used in mixes. Most studies consider compost in terms of peat-substitute or replacement and not as a source of fertility in soilless systems. Common challenges in using compost in soilless media are due to immaturity of the compost, poor water holding capacity, and unbalanced salinity and pH. It is possible to certify organic soilless production systems; however, the National Organic Program (NOP) of the U.S. Department of Agriculture has not yet provided clear rules and requirements supporting these systems. The objective of this article is to review the literature on soilless organic vegetable production, summarize results from the more widely studied topic of vegetable transplant production, and point to future research for organic agriculture.

Full access

Mary A. Rogers and Annette L. Wszelaki

High tunnels are rapidly gaining favor from growers in many regions of the United States because these structures extend the growing season and increase quality of high-value horticultural crops. Small to midsized organic growers who sell tomatoes (Solanum lycopersicum) for the fresh market can benefit from lower disease pressure and higher marketable yields that can be achieved in high tunnels. High tunnels also protect crops from environmental damage and benefit production of heirloom tomatoes as these varieties often have softer fruit and are more susceptible to diseases and cracking and splitting than hybrid varieties. The objective of this study was to determine the impacts of high tunnel production and planting date on heirloom and hybrid tomato varieties by observing differences in plant growth, yield, marketability, and early blight (Alternaria solani) development within an organic production system. This study showed no increase in total yields in high tunnels as compared with the open field, but increased marketability and size of tomatoes, and lowered incidence of defoliation resulting from early blight. Tomato planted earlier in both high tunnels and the open field yielded more marketable fruit during the production season than plants established on later planting dates. Hybrid varieties yielded more marketable fruit than heirloom varieties; however, heirloom tomatoes can have equivalent market value because of greater consumer demand and premium prices attained in the local market.

Open access

Heidi C. Anderson, Mary A. Rogers and Emily E. Hoover

Consumer demand for local and organic strawberries (Fragaria ×ananassa) is increasing. Growers who can meet this demand have a competitive edge in the direct-to-consumer market. Innovations in strawberry production for northern climates offer new opportunities for growers to meet the demand for local organic strawberries. Typically adopted for season extension, the use of poly-covered tunnels for crop protection provides other benefits including protection from adverse weather. Low tunnels are easy to install, low cost, temporary protective structures that are well-adapted for annual day-neutral strawberry production, and they are more space efficient than high tunnels for these low-stature crops. A range of specialty tunnel plastics that modify and diffuse light are available, but there is little information on how these influence strawberry plant growth and performance in the field. Our objectives were to determine the effects of experimental ultraviolet blocking and transmitting plastics on light and microclimate in low tunnel environments and assess differences in fruit yield and quality in the day-neutral strawberry cultivar Albion in an organic production system. This research was conducted on U.S. Department of Agriculture-certified organic land over 2 years, in 2016 and 2017. We found that ultraviolet intensity and daily light integral (DLI) were lower in covered plots than in the open field. Maximum daily temperatures were slightly higher in covered plots. Both ultraviolet-blocking and ultraviolet-transmitting plastics improved marketable fruit yield compared with the open-field control. Strawberries grown in the open-field treatment were lower in chroma than covered plots in 2017, and there was no difference in total soluble solids between treatments in either year. Low tunnel systems allow for increased environmental control and improved fruit quality and are well-adapted for day-neutral organic strawberry production systems.