Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Marvin Miller x
Clear All Modify Search
Free access

David W. Wolff and Marvin E. Miller

Monosporascus root rot/vine decline (MRR/VD), caused by Monosporascus cannonballus, is a serious disease of the major melon production areas of Texas, California, and Arizona. We have previously identified differing levels of tolerance in melon germplasm based on vine disease symptoms. This study was conducted to evaluate the yield response of commercial and experimental cantaloupe and honeydew hybrids subjected to MRR/VD. Thirty-nine and six cantaloupe and honeydew hybrids, respectively, were transplanted into a field highly infested with M. cannonballus in March 1995 in a randomized, complete block with 4 replications. The field was highly infested with Monosporascus cannonballus. `Caravelle' (very susceptible) and `Deltex' (tolerant) were included as control entries. Fruit were harvested at maturity and sized. Any fruit that did not mature completely due to vine death were counted as culls (unmarketable). Marketable yield of the cantaloupe entries ranged from 26.74% to 67.35%. The most tolerant hybrids were `SR103654', `Don Carlos', `Explorer', and `Ovation'. Marketable yield of the honeydews ranged from 8.43% to 41.46%, with `Morning Ice' and `Creme de Menthe' showing the most tolerance. The best performing hybrids were evaluated again the Fall 1995 and Spring 1996 seasons. In general, genotypes which matured later, and had a more dispersed fruit set, were more tolerant to MRR/VD. This supports previous data showing that high physiological stress (heavy, concentrated fruit load) leads to more severe and rapid vine collapse.

Free access

Kevin Crosby, David Wolff and Marvin Miller

The fungus Monosporascus cannonballus Pollock and Uecker infects melon (Cucumis melo L.) roots and causes root rot/vine decline disease, which has reduced productivity of commercial muskmelon and honeydew cultivars in South Texas. To assess the impact of the fungus on several root traits, two greenhouse experiments were carried out over two seasons. A comparison of inoculated vs. control root systems was carried out with four melon cultivars representing both susceptible (`Magnum 45' and `Caravelle') and tolerant types (`Deltex' and `Doublon'). The sand medium was inoculated with 50–60 colony forming units (CFUs) per gram of the severe Monosporascus strain, TX90-25. After a 30-day growth period, the control and inoculated root systems were carefully cleaned and evaluated. Roots were scanned by a computer and the data were analyzed by the Rhizo Pro 3.8 program. The traits of interest included total root length, average root diameter, number of root tips, number of fine roots (0–0.5 mm), and number of small roots (0.5–1 mm). Significant differences existed between the two tolerant cultivars and the two susceptible ones for four of the traits. Total root length, fine and small root length, and root tip number were greater for `Deltex' than for both susceptible cultivars and greater for `Doublon' than for `Caravelle'. The results suggest that tolerance to this pathogen is closely linked to the integrity of the root structure. The potential for improving root vigor to combat root rot/vine decline merits further investigation.

Free access

Robert Wiedenfeld, B. Scully, Marvin Miller, Jonathan Edelson and Jiandong Wang

Purple blotch (Alternari a porri) and thrips (Thrips tabaci) can seriously reduce yields of short day onions in South Texas. The level of injury caused by these organisms is influenced by the concentration of nitrogen in leaf tissue. Lower levels of tissue nitrogen increase susceptibility to A. porri but decrease susceptibility to thrips. The purpose of this study was to evaluate the effect of tissue N levels on joint susceptibility of 4 onion cultivars to A. porri and thrips. Foliage was fertilized at 0, 4, 8, 12 or 16 lbs N/ac/wk for 6 weeks. Nitrogen concentrations in onion leaves varied over time and by leaf age, but showed very little effect due to foliar fertilization. Significant differences in thrips were noted among cultivars, but not among leaf N concentrations with cultivars. Purple blotch outbreak occurred late in the growing season and was not related to leaf N levels. Total N uptake failed to respond to foliar fertilization, therefore overall use efficiency of the foliar N applied averaged only about 10% relative to the amount taken up in the check plots.

Free access

Dan Lineberger, Frank Dainello, John Jackman and Marvin Miller

Plant problems often are diagnosed by comparing the problem in hand to a set of color photographs of known symptoms. Color photographs are expensive and time consuming to publish and distribution of books and pamphlets is costly. Delivery of high resolution color photographs of common plant disorders via the World Wide Web is a cost-effective alternative. A web-based diagnostic resource has been created to assist problem identification of cucurbit disorders including nutritional, disease, and insect problems. The diagnostic tool consists of arrays of high resolution, color images grouped by similarity of appearance. The image arrays are clickable image maps, and the user is provided with increasingly detailed information and larger images as images are selected. At the final selection, the user is presented with a full screen image and text information describing the identity and control recommendations for the problem illustrated. This tool is intended to allow experienced diagnosticians to confirm a problem diagnosis, and to aid less experienced individuals in making proper diagnoses.

Free access

David W. Wolff, Marvin E. Miller and Carmen Lander

The nature and magnitude of genotype × environment interactions will determine the extent of testing required (locations, years) to accurately evaluate a genotype's performance. Data from yearly T-AES muskmelon variety trials were analyzed to determine the level of variety (V) × year (Y), V × location (L), and V × Y × L interactions for yield and fruit size. Data analyzed were of nine hybrids grown at three commercial farms over two years. Fruits were harvested similar to grower practices, and were sorted into size classes (9 - 30) or culls. V × Y and V × L interactions for marketable yield and total yield were not significant. V × Y × L interaction was significant for marketable yield, but not for total yield. V × Y × L interactions were highly significant for percentage culls and percentage of fruit in each size class. V × L interactions were also significant for percentage of fruit in most size classes. Data indicate that specific location-year combinations differentially affect a genotype's fruit size, most likely due to weather, planting time, and stress factors. Multiple year and location testing of genotypes is therefore critical, particularly for evaluation of fruit size.

Free access

David W. Wolff, Daniel I. Leskovar, Mark C. Black and Marvin E. Miller

The effect of zero, one, and two fruits per vine on plant growth and reaction to Monosporascus root rot/vine decline were investigated. In the first study, four cultivars with differing levels of tolerance were evaluated (`Primo', `Deltex', `Caravelle', `Magnum 45'). Vine decline ratings were taken weekly during the harvest period for 4 weeks. Treatments with no fruit showed delayed and less-severe vine decline symptoms. Temperature also effected vine decline symptom expression. In a Fall test, with lower temperatures during fruit maturity, symptoms were delayed in all treatments and often absent in treatments with no fruit load. Vine decline symptom expression is greatly effected by physiological (fruit load) and temperature stress. A subsequent study was conducted to more precisely quantify the effect of various fruit loads on shoot/root partitioning and vine decline symptoms. In addition to growth parameters root disease ratings were taken. `Caravelle', the most-susceptible genotype, was grown under differing fruit loads as mentioned above in Weslaco and Uvalde, Texas. As fruit load increased, root size decreased. Increased vine decline symptoms were observed under higher fruit loads. The implications on germplasm screening and breeding for resistance will be discussed.

Free access

Matthew D. Kleinhenz, Sonia Walker, John Cardina, Marvin Batte, Parwinder Grewal, Brian McSpadden-Gardener, Sally Miller and Deborah Stinner

The risk: reward for a transition to organic vegetable farming near urban areas and changes in soil, crop, and economic parameters during transition are poorly understood. A 4-year study was initiated in 2003 at the Ohio State Univ.–OARDC to document the relative advantages of four transition strategies and their effects on major cropping system variables. Soil previously in a vegetable-agronomic crop rotation has been maintained fallow, planted to a mixed-species hay, used in open field vegetable production, or used in vegetable production under high tunnels, transition strategies with a range of management intensity and expected financial return. Each strategy was replicated four times within the overall experimental area. Half of the soil in each strategy unit was amended with composted dairy manure while the remaining soil was unamended. Field vegetable plots have been planted to potato, butternut squash, and green bean. High tunnels have been planted to potato, zucchini, and a fall–spring rotation of beet, swiss chard, mixed lettuce, radish, and spinach. Data describing the outcomes of the strategies in terms of farm economics, crop yield and quality, weed ecology, plant pest and disease levels, and soil characteristics (physical, chemical, biological) have been recorded. Inputs in the high tunnels have exceeded inputs in all other strategies; however, high tunnel production has widened planting and harvesting windows and increased potato yield, relative to open field production. To date, compost application has increased crop yield 30% to 230% and influenced crop quality, based on analytical and human panelist measures. Weed (emerged seedlings, seedbank) and nematode populations also continue to vary among the transition strategies.

Free access

Carlos A. Lazcano, Frank J. Dainello, Leonard M. Pike, Marvin E. Miller, Lynn Brandenberger and Larry R. Baker

Carrot (Daucus carota Mill. cv. Caropak) was studied under four population densities, and three numbers of seed lines per bed, and was harvested under three root size harvest parameters. Four phases (cutting, grading, peeling, and marketable yield) in the cut-and-peel baby carrot process were evaluated. Root length was most desirable when plots were harvested when 25% to 35% of the roots measured > 2 cm in diameter. Roots were longest (14.7 cm) in the treatments containing six seed lines per bed. The harvest criteria of 25% to 35% root diameter >2 cm also produced the highest fresh mass (48.1 t·ha-1), and the highest cut and graded mass (37.7 and 32.3 t·ha-1, respectively). A population density of 321 plants/m2 produced the highest fresh and cut mass. Percent cut waste (21.6% crowns and tips) was not affected by root size at harvest, but percent graded waste was lowest (14.2%) when plants were harvested at the greatest root size. Four seed lines per bed produced the highest graded (18.4%), and total waste (61.2%), but not cut waste. The lowest total waste, estimated at 59.7% and the highest projeced marketable yield (19.4 t·ha-1) occurred when roots were harvested using the 25% to 35% root diameter >2-cm parameter. Total waste and marketable yield were obtained using a fixed waste value of 40% in the peeling phase (peeling, polishing, and grading before packing). This percentage could vary depending on the equipment specifications and quality control of a given processing facility. Root size at harvest proved to be the main factor affecting projected marketable yield of cut-and-peel baby carrots at the population densities used in this study.

Free access

Carlos A. Lazcano, Frank J. Dainello, Leonard M. Pike, Marvin E. Miller, Lynn Brandenberger and Larry R. Baker

Baby-style carrot Daucus carota Mill. cv. Caropak was studied under four population densities, three different numbers of lines per bed, and harvested under three root size harvest parameters in the Rio Grande Valley of Texas. Four phases in the baby-style carrot process were evaluated. Length of the roots at harvest and projected values for total waste and marketable yield were estimated. Length was affected by root size at harvest, the most desirable root length occurred when harvested at 25%-35% roots diameter >2 cm. The longer roots (16.55 cm) were in the treatments with 6 seed lines per bed and 197 plants/m2. Population density affected the fresh and cut weight in the baby-style carrots process with the highest weight at 321 plants/m2. Percent of cut waste was the same at the three-root size at harvest with 21.65% of crowns and tips cut. The percent of graded waste was lowest when harvested at the biggest root size, 14.23% and four seed lines per bed produced the highest waste with 18.14. Seed lines per bed affected the quality of the roots in the graded step. Based on a 40% peeling waste projection the lowest total waste was estimated at 59.69% and the highest projected marketable yield of 19.4 t/ha of final product when roots were harvested using the 25%-35% root diameter parameter. Root size at harvest is the main factor affecting projected marketable yield of baby-style carrots in South Texas.

Full access

Carlos A. Lazcano, Frank J. Dainello, Leonard M. Pike, Marvin E. Miller, Lynn Brandenberger and Larry R. Baker

Carrot (Daucus carota Mill. cv. Caropak) was studied under four population densities, and three numbers of seed lines per bed, and was harvested under three root size harvest parameters. Four phases (cutting, grading, peeling, and marketable yield) in the cut-and-peel baby carrot process were evaluated. Root length was most desirable when plots were harvested when 25% to 35% of the roots measured >2 cm in diameter. Roots were longest (14.7 cm) in the treatments containing six seed lines per bed. The harvest criteria of 25% to 35% root diameter >2 cm also produced the highest fresh mass (48.1 t·ha-1), and the highest cut and graded mass (37.7 and 32.3 t·ha-1, respectively). A population density of 321 plants/m2 produced the highest fresh and cut mass. Percent cut waste (21.6% crowns and tips) was not affected by root size at harvest, but percent graded waste was lowest (14.2%) when plants were harvested at the greatest root size. Four seed lines per bed produced the highest graded (18.4%), and total waste (61.2%), but not cut waste. The lowest total waste, estimated at 59.7% and the highest projected marketable yield (19.4 t·ha-1) occurred when roots were harvested using the 25% to 35% root diameter >2-cm parameter. Total waste and marketable yield were obtained using a fixed waste value of 40% in the peeling phase (peeling, polishing, and grading before packing). This percentage could vary depending on the equipment specifications and quality control of a given processing facility. Root size at harvest proved to be the main factor affecting projected marketable yield of cut-and-peel baby carrots at the population densities used in this study.